• Title/Summary/Keyword: equilibrium equation

Search Result 838, Processing Time 0.034 seconds

Sensitivity of EOS in Analyzing the High-Pressure Vaporization Characteristics (고압 상태의 증발 특성 해석결과에 미치는 상태방정식의 영향)

  • You, Y.W.;Kim, Y.M.
    • Journal of ILASS-Korea
    • /
    • v.2 no.3
    • /
    • pp.32-43
    • /
    • 1997
  • A comparison of predicted molar volume, vapor - liquid equilibrium, enthalpy of vaporization, droplet size history. and vaporization rates with several forms of equation of state has been made. The equation of state (EOS) investigated in this study includes the EOS given by Redlich - Kwong, the Soave - Redlich - Kwong, and the Peng - Robinson. Numerical results indicate that the Peng - Robinson EOS yields more accurate predictions of vapor - liquid equilibrium under a broader range of temperature and pressure conditions, especially at high pressures and near the critical point.

  • PDF

Pullout capacity of vertical plate anchors in cohesion-less soil

  • Kame, G.S.;Dewaikar, D.M.;Choudhury, Deepankar
    • Geomechanics and Engineering
    • /
    • v.4 no.2
    • /
    • pp.105-120
    • /
    • 2012
  • In this paper, the ultimate pullout capacity of a vertical plate strip anchors in cohesion-less soil is analyzed with the consideration of active and passive state of equilibrium in the soil. K$\ddot{o}$tter's equation is used to compute the active and passive thrusts (along with their point of application) which are subsequently used in the analysis in which, all the equation of equilibrium are properly interpreted. A comparison of the results with the experimental results vis-$\grave{a}$-vis available theoretical/empirical solutions shows that, the proposed analysis provides a better estimate of the pullout capacity.

Design Sensitivity Analysis of Coupled Thermo-elasticity Problems

  • Choi Jae-yeon;Cho Seonho
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.3
    • /
    • pp.50-60
    • /
    • 2004
  • In this paper, a continuum-based design sensitivity analysis (DSA) method is developed for the weakly coupled thermo-elasticity problems. The temperature and displacement fields are described in a common domain. Boundary value problems such as an equilibrium equation and a heat conduction equation in steady state are considered. The direct differentiation method of continuum-based DSA is employed to enhance the efficiency and accuracy of sensitivity computation. We derive design sensitivity expressions with respect to thermal conductivity in heat conduction problem and Young's modulus in equilibrium equation. The sensitivities are evaluated using the finite element method. The obtained analytical sensitivities are compared with the finite differencing to yield very accurate results. Extensive developments of this method are useful and applicable for the optimal design problems incorporating welding and thermal deformation problems.

LINEAR STABILITY OF TRIANGULAR EQUILIBRIUM POINTS IN THE PHOTOGRAVITATIONAL RESTRICTED THREE BODY PROBLEM WITH TRIAXIAL RIGID BODIES, WITH THE BIGGER ONE AN OBLATE SPHEROID AND SOURCE OF RADIATION

  • KUMAR, AVDHESH;ISHWAR, B.
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.297-299
    • /
    • 2015
  • In this paper we have examined the linear stability of triangular equilibrium points in the photogravitational restricted three body problem when both primaries are triaxial rigid bodies, the bigger one an oblate spheroid and source of radiation. The orbits about the Lagrangian equilibrium points are important for scientific investigation. A number of space missions have been completed and some are being proposed by various space agencies. We analyze the periodic motion in the neighbourhood of the Lagrangian equilibrium points as a function of the value of the mass parameter. Periodic orbits of an infinitesimal mass in the vicinity of the equilibrium points are studied analytically and numerically. The linear stability of triangular equilibrium points in the photogravitational restricted three body problem with Poynting-Robertson drag when both primaries are oblate spheroids has been examined by A. Kumar (2007). We have found the equations of motion and triangular equilibrium points for our problem. With the help of the characteristic equation we have discussed stability conditions. Finally, triangular equilibrium points are stable in the linear sense. It is further seen that the triangular points have long or short periodic elliptical orbits in the same range of ${\mu}$.

Exact solution of a thick walled functionally graded piezoelectric cylinder under mechanical, thermal and electrical loads in the magnetic field

  • Arefi, M.;Rahimi, G.H.;Khoshgoftar, M.J.
    • Smart Structures and Systems
    • /
    • v.9 no.5
    • /
    • pp.427-439
    • /
    • 2012
  • The present paper deals with the analytical solution of a functionally graded piezoelectric (FGP) cylinder in the magnetic field under mechanical, thermal and electrical loads. All mechanical, thermal and electrical properties except Poisson ratio can be varied continuously and gradually along the thickness direction of the cylinder based on a power function. The cylinder is assumed to be axisymmetric. Steady state heat transfer equation is solved by considering the appropriate boundary conditions. Using Maxwell electro dynamic equation and assumed magnetic field along the axis of the cylinder, Lorentz's force due to magnetic field is evaluated for non homogenous state. This force can be employed as a body force in the equilibrium equation. Equilibrium and Maxwell equations are two fundamental equations for analysis of the problem. Comprehensive solution of Maxwell equation is considered in the present paper for general states of non homogeneity. Solution of governing equations may be obtained using solution of the characteristic equation of the system. Achieved results indicate that with increasing the non homogenous index, different mechanical and electrical components present different behaviors along the thickness direction. FGP can control the distribution of the mechanical and electrical components in various structures with good precision. For intelligent properties of functionally graded piezoelectric materials, these materials can be used as an actuator, sensor or a component of piezo motor in electromechanical systems.

Steady-State Equilibrium Analysis of a Multibody System Driven by Constant Generalized Speeds

  • Park, Dong-Hwan;Park, Jung-Hun;Yoo, Hong-Hee
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.10
    • /
    • pp.1239-1245
    • /
    • 2002
  • A formulation which seeks steady-state equilibrium positions of constrained multibody systems driven by constant generalized speeds is presented in this paper. Since the relative coordinates are employed, constraint equations at cut joints are incorporated into the formulation. To obtain the steady-state equilibrium position of a multibody system, nonlinear equations are derived and solved iteratively. The nonlinear equations consist of the force equilibrium equations and the kinematic constraint equations. To verify the effectiveness of the proposed formulation, two numerical examples are solved and the results are compared with those of a commercial program.

An Experimental Study of Vapor-Liquid Equilibrium for HFC12S+Propane Refrigerant Mixtures (HFC125+Propane 혼합냉매의 기-액 평형에 관한 실험적 연구)

  • 강준원;박영무;유재석;이종화
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.7
    • /
    • pp.563-571
    • /
    • 2003
  • The forty vapor-liquid equilibrium data of the binary system, HFC125+Propane, were measured between 273.15 and 313.15 K at 10 K interval and the composition range 0.2∼0.75, respectively. Experiments were performed in a circulation type apparatus in which the vapor phase was forced through the liquid phase. The composition at equilibrium were mea-sured by gas chromatography, and its response was calibrated using gravimetrically prepared mixtures. Vapor-liquid equilibrium data were calculated by using CSD equation of state and compared with the experimental data.

Relationship Between Housing Prices and Expected Housing Prices in the Real Estate Industry (주택유통산업에서의 주택가격과 기대주택가격간의 관계분석)

  • Choi, Cha-Soon
    • Journal of Distribution Science
    • /
    • v.13 no.11
    • /
    • pp.39-46
    • /
    • 2015
  • Purpose - In Korea, there has been a recent trend that shows housing prices have risen rapidly following the International Monetary Fund crisis. The rapid rise in housing prices is spreading recognition of this as a factor in housing price volatility. In addition, this raises the expectations of housing prices in the future. These expectations are based on the assumption that a relationship exists between the current housing prices and expected housing prices in the real estate industry. By performing an empirical analysis on the validity of the claim that an increase in current housing prices can be correlated with expected housing prices, this study examines whether a long-term equilibrium relationship exists between expected housing prices and existing housing prices. If such a relationship exists, the recovery of equilibrium from disequilibrium is analyzed to derive related implications. Research design, data, and methodology - The relationship between current housing prices and expected housing prices was analyzed empirically using the Vector Error Correction Model. This model was applied to the co-integration test, the long-term equilibrium equation among variables, and the causality test. The housing prices used in the analysis were based on the National Housing Price Trend Survey released by Kookmin Bank. Additionally, the Index of Industrial Product and the Consumer Price Index were also used and were obtained from the Bank of Korea ECOS. The monthly data analyzed were from January 1987 to May 2015. Results - First, a long-term equilibrium relationship was established as one co-integration between current housing price distribution and expected housing prices. Second, the sign of the long-term equilibrium relationship variable was consistent with the theoretical sign, with the elasticity of housing price distribution to expected housing price, the industrial production, and the consumer price volatility revealed as 1.600, 0.104,and 0.092, respectively. This implies that the long-term effect of expected housing price volatility on housing price distribution is more significant than that of the industrial production and consumer price volatility. Third, the sign of the coefficient of the error correction term coincided with the theoretical sign. The absolute value of the coefficient of the correction term in the industrial production equation was 0.006, significantly larger than the coefficients for the expected housing price and the consumer price equation. In case of divergence from the long-term equilibrium relationship, the state of equilibrium will be restored through changes in the interest rate. Fourth, housing-price volatility was found to be causal to expected housing price, and was shown to be bi-directionally causal to industrial production. Conclusions - Based on the finding of this study, it is required to relieve the association between current housing price distribution and expected housing price by using property taxes and the loan-to-value policy to stabilize the housing market. Further, the relationship between housing price distribution and expected housing price can be examined and tested using a sophisticated methodology and policy variables.

ON THE RECURSIVE SEQUENCE $x_{n+l} =\alpha+\frac{x_{n-1}^{p}}{x_{n}^{p}}$

  • STEVIC STEVO
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.229-234
    • /
    • 2005
  • The boundedness, global attractivity, oscillatory and asymptotic periodicity of the positive solutions of the difference equation of the form $x_{n+l} =\alpha+\frac{x_{n-1}^{p}}{x_{n}^{p}},\;\; n = 0, 1, ...$ is investigated, where all the coefficients are nonnegative real numbers.

The Duration of Punctuated Equilibria in Simple Genetic Algorithms (단순 유전 알고리즘에서 단속평형의 지속시간에 대한 연구)

  • Oh, Sang-Yeop
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.11
    • /
    • pp.1059-1070
    • /
    • 2005
  • For genetic algorithms, the population may get stuck in a local optimum. The population can escape from this after a long duration. This phenomenon is called punctuated equilibrium. The punctuated equilibria observed in nature and computational ecosystems are known to be well described by diffusion equations. In this paper, simple genetic algorithms are theoretically analyzed to show that they can also be described by a diffusion equation. When fitness is the function of unitation, this analysis can be further refined to make the parameters of genetic algorithms appear in this equation. Using theoretical results on the diffusion equation, the duration of equilibrium is shown to be exponential of such parameters as population size, 1/(mutation probability), and potential barrier. This is corroborated by simulation results for bistable potential landscapes with one local optimum and one global optimum.