The Duration of Punctuated Equilibria in Simple Genetic Algorithms

단순 유전 알고리즘에서 단속평형의 지속시간에 대한 연구

  • 오상엽 (금오공과대학교 컴퓨터공학과)
  • Published : 2005.11.01

Abstract

For genetic algorithms, the population may get stuck in a local optimum. The population can escape from this after a long duration. This phenomenon is called punctuated equilibrium. The punctuated equilibria observed in nature and computational ecosystems are known to be well described by diffusion equations. In this paper, simple genetic algorithms are theoretically analyzed to show that they can also be described by a diffusion equation. When fitness is the function of unitation, this analysis can be further refined to make the parameters of genetic algorithms appear in this equation. Using theoretical results on the diffusion equation, the duration of equilibrium is shown to be exponential of such parameters as population size, 1/(mutation probability), and potential barrier. This is corroborated by simulation results for bistable potential landscapes with one local optimum and one global optimum.

유전 알고리즘에서 개체군은 지역 최적치에 빠질 수 있지만 긴 지속시간이 지난 후에는 여기에서 빠져나을 수 있으며 이러한 현상을 단속평형 (punctuated equilibrium)이라고 한다. 자연계나 컴퓨터 생태계 (computational ecosystems) 에서 관찰되는 단속평형은 확산 방정식 (diffusion equation)으로 잘 설명된다. 본 연구에서는 단순 유전 알고리즘을 이론적으로 분석하여 개체군의 움직임이 확산 방정식으로 표현될 수 있다는 것을 보인다. 또한 적합도 (fitness) 함수를 단위화 (unitation) 함수로 국한하면 이 분석을 더 구체화하여 유전 알고리즘의 주요 변수들이 이 방정식에 나타나도록 할 수 있다. 이 경우 확산 방정식에 대한 이론적 결과를 이용하면 지역 최적치에서 빠져 나오기까지의 지속시간이 개체군의 크기, 1/(돌연변이 확률), 그리고 지역 최적치의 깊이에 대해 지수적으로 증가한다는 것을 알 수 있다. 이러한 이론적 결과는 이중안정 지형 (bistable landscapes)에서의 시뮬레이션 결과와 일치한다.

Keywords

References

  1. Goldberg, D. E., Genetic algorithms in search, optimization, and machine learning, Addison-Wesley, New York, 1989
  2. Holland, J. H., Adaptation in natural and artificial systems, The MIT Press, Cambridge, MA, 2nd Ed., 1992
  3. Goldberg, D. E.,
  4. Shapiro, J. and Prugel-Bennett, A., 'Genetic algorithm dynamics in a two-well potential,' in FOGA4 edited by Belew, R. K. and Vose, M. D., Morgan Kaufmann, San Francisco, 1997
  5. Ceccatto, H. A. and Huberman, B. A., 'Persistence of nonoptimal strategies,' Proceedings of the National Academy of Sciences of the United States of America, pp. 3443?3446, 1989 https://doi.org/10.1073/pnas.86.10.3443
  6. Newman, C. M., Cohen, J. E. and Kipnis, C., 'Neo-darwinian evolution implies punctuated equilibria,' Nature, pp. 400?401, May 1985 https://doi.org/10.1038/315400a0
  7. Vose, M. D. and Liepins, G. E., 'Punctuated equilibria in genetic search,' Complex Systems, Vol.5, No.1, pp. 31-44, 1991
  8. Kipnis, C. and Newman, C. M. 'The metastable behavior of infrequently observed, weakly random, one-dimensional diffusion processes,' SIAM Journal on Applied Mathematics, Vol.45, No.6, pp. 972-982, 1985 https://doi.org/10.1137/0145059
  9. Nimwegen, E. van, Crutchfield, J. P. and Mitchell, M., 'Statistical dynamics of the royal road genetic algorithm,' Santa Fe Institute Working Paper 97-04-035, 1997
  10. Jansen, T. and Wegener, I., 'On the analysis of evolutionary algorithms - a proof that crossover really can help,' in Proceedings of the 7th Annual European Symposium on Algorithms (ESA'99) edited by Nesetril, J., Springer, Berlin, 1999
  11. Rogers, A. and Prugel-Bennett, A., 'The dynamics of a genetic algorithm on a model hard optimization problem,' Complex Systems, Vol.11, No.6, pp. 437-464, 2000
  12. Prugel-Bennett, A. and Shapiro, J. L., 'An analysis of genetic algorithms using statistical mechanics,' Physical Review Letters, Vol.72, No.9, pp. 1305?1309, 1994
  13. Prugel-Bennett, A. and. Shapiro, J. L., 'The dynamics of a genetic algorithm for simple random ising systems,' Physica D, Vol.104, No.1, pp. 75?114, 1997 https://doi.org/10.1016/S0167-2789(96)00163-7
  14. Rattray, M., 'The dynamics of a genetic algorithm under stabilizing selection,' Complex Systems, Vol.6, No.3, pp. 213-234, 1995
  15. Scheaffer, R. L. and McClave, J. T., Probability and statistics for engineers, PWS-KENT, Boston, 1990
  16. Srinivas, M. and Patnaik, L. M., 'On modeling genetic algorithms for functions of unitation,' IEEE transactions on Systems, Man, and Cybernetics, Vol.26, No.6, pp. 809-821, 1996 https://doi.org/10.1109/3477.544295
  17. Huberman, B. A. and Hogg, T., 'The behavior of computational ecologies.,' in The Ecology of Computation edited by Huberman, B. A., North-Holland, Amsterdam, 1988
  18. Kampen, N. V., Stochastic processes in physics and chemistry, Elsevier Science, Amsterdam, 1981
  19. Kephart, J. O., Hogg, T. and Huberman, B. A., 'Dynamics of computational ecosystems,' Physical Review A, Vol.40, No.1, pp. 404?421, 1989
  20. Galves, A., Olivieri, E. and Vares, M. E., 'Metastability for a class of dynamical systems subject to small random perturbations,' The Annals of Probability, Vol.15, No.4, pp. 1288-1305, 1987 https://doi.org/10.1214/aop/1176991977
  21. Aarts, E. and Corst, J., Simulated Annealing and Boltzmann Machines, John Wiley & Sons, New York, 1989
  22. Hogg, T. and Huberman, B. A., 'Controlling chaos in distributed systems,' IEEE transactions on Systems, Man, and Cybernetics, Vol.21, No.6, pp. 1325-1332, 1991 https://doi.org/10.1109/21.135679