• Title/Summary/Keyword: equilibrium equation

Search Result 838, Processing Time 0.031 seconds

A study on the impact of carbon tax on carbon dioxide emission, energy use and green growth: Focusing on Finland and 4 others (탄소세 도입이 탄소배출량과 에너지 사용 및 경제성장에 미치는 영향에 관한 연구: 핀란드 외 4개국을 중심으로)

  • Chung, Sang-Kuck;Kim, Seong-Ki
    • International Area Studies Review
    • /
    • v.15 no.1
    • /
    • pp.495-522
    • /
    • 2011
  • In this study, a vector error correction model is considered to analyze the correlations among carbon emission, energy use and economic growth using countries adopted carbon tax such as Finland, Netherland, Newzealand, Sweden, and United Kingdom in the short-run dynamics. In order to examine the effect of a carbon tax on the carbon emission specifically for Finland, New zealand and Sweden in the cointegration coefficients among variables, the economic growth equation has the statistically significant negative value(positive values for Netherland and UK). This implies that in the case of the deviation from a long-run equilibrium all variables except carbon emission and energy use are adjusted toward decreasing. After introducing a carbon tax, all variables for Finland, New zealand and Sweden appear to be negative and positive values for the other countries. The evidence that the carbon emission and energy use have been decreased is very weak in the short-run for Finland, New zealand and Sweden but the economic growth is on the decrease after a carbon tax. However, the empirical results show that the increase in carbon emission leads to the decrease in production for Netherland and UK. This implies that for reducing the carbon emission, these countries need to provide more aggressive policies.

COMPARISON OF FLUX AND RESIDENT CONCENTRATION BREAKTHROUGH CURVES IN STRUCTURED SOIL COLUMNS (구조토양에서의 침출수와 잔존수농도의 파과곡선에 관한 비교연구)

  • Kim, Dong-Ju
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.2
    • /
    • pp.81-94
    • /
    • 1997
  • In many solute transport studies, either flux or resident concentration has been used. Choice of the concentration mode was dependent on the monitoring device in solute displacement experiments. It has been accepted that no priority exists in the selection of concentration mode in the study of solute transport. It would be questionable, however, to accept the equivalency in the solute transport parameters between flux and resident concentrations in structured soils exhibiting preferential movement of solute. In this study, we investigate how they differ in the monitored breakthrough curves (BTCs) and transport parameters for a given boundary and flow condition by performing solute displacement experiments on a number of undisturbed soil columns. Both flux and resident concentrations have been simultaneously obtained by monitoring the effluent and resistance of the horizontally-positioned TDR probes. Two different solute transport models namely, convection-dispersion equation (CDE) and convective lognormal transfer function (CLT) models, were fitted to the observed breakthrough data in order to quantify the difference between two concentration modes. The study reveals that soil columns having relatively high flux densities exhibited great differences in the degree of peak concentration and travel time of peak between flux and resident concentrations. The peak concentration in flux mode was several times higher than that in resident one. Accordingly, the estimated parameters of flux mode differed greatly from those of resident mode and the difference was more pronounced in CDE than CLT model. Especially in CDE model, the parameters of flux mode were much higher than those of resident mode. This was mainly due to the bypassing of solute through soil macropores and failure of the equilibrium CDE model to adequate description of solute transport in studied soils. In the domain of the relationship between the ratio of hydrodynamic dispersion to molecular diffusion and the peclet number, both concentrations fall on a zone of predominant mechanical dispersion. However, it appears that more molecular diffusion contributes to the solute spreading in the matrix region than the macropore region due to the nonliearity present in the pore water velocity and dispersion coefficient relationship.

  • PDF

Removal of Soluble Fe(II) using Reactive Media Coated with both Fe and Mn (철과 망간이 동시에 코팅된 반응성 매질을 이용한 용존 Fe(II) 제거)

  • Min, Sang-Yoon;Chang, Yoon-Young;Yang, Jae-Kyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.2
    • /
    • pp.85-92
    • /
    • 2011
  • Evaluation of the removal efficiencies of Fe(II) by reactive sand media coated with manganese (MCS), iron (ICS) and both of iron and manganese (IMCS) was investigated as functions of solution pH ranging from 2 to 9, reaction time and concentration of Fe(II) in a batch reactor using each reactive medium and additional oxidants such as $KMnO_4$ and NaOCl. When only Fe(II) was present in solution without any reactive medium, removal of Fe(II) was quite low below pH 5 due to a slow oxidation of Fe(II) and/or negligible precipitation but greatly increased above pH 5 due to a rapid oxidation of Fe(II) and subsequent precipitation of oxidized Fe species. ICS showed negligible efficiency on the removal of Fe(II) through adsorption. However, an efficient removal of Fe(II) was observed at low solution pH in the presence of IMCS or MCS through rapid oxidation and subsequent precipitation. Removal efficiency of Fe(II) by IMCS in the presence or absence of NaOCl was quite similar. Removal rate of Fe(II) by IMCS and additional oxidants gradually increased as the solution pH increased. From the kinetic experiments, removal pattern of Fe(II) was better described by pseudo-second-order equation than pseudo-first-order equation. A rapid removal of Fe(II) using IMCS in the presence of $KMnO_4$ was observed in the first 10 min. The initial removal rate of Fe(II) using $KMnO_4$ was 14,286 mg/kg hr. In case of using NaOCl, the removal of Fe(II) occurred rapidly in the first 6 hrs and then reached the near-equilibrium state. Removal of Fe(II) on IMCS was well expressed by Langmuir isotherm and the maximum removal capacity of Fe(II) was calculated as 1,088 mg/kg.

Persistence of Fungicide Pencycuron in Soils (토양 중 살균제 Pencycuron의 잔류 특성)

  • An, Xue-Hua;An, Wen-Hao;Im, Il-Bin;Lee, Sang-Bok;Kang, Jong-Gook
    • The Korean Journal of Pesticide Science
    • /
    • v.10 no.4
    • /
    • pp.296-305
    • /
    • 2006
  • The adsorption and persistence of pencycuron {1-(4-chlorobenzyl) cyclopentyl-3-phenylurea} in soils were investigated under laboratory and field conditions to in order to assess the safety use and environmental impact. In the adsorption rate experiments, a significant power function of relation was found between the adsorbed amount of pencycuron and the shaking time. Within one hour following the shaking, the adsorption amounts in the SCL and the SiCL were 60 and 65% of the maximum adsorption amounts, respectively. The adsorption reached a quasi-equilibrium 12 hours after shaking. The adsorption isotherms followed the Freundlich equation. The coefficient (1/n) indicating adsorption strength and degree of nonlinearity was 1.45 for SCL and 1.68 to SiCL. The adsorption coefficients ($K_d$) were 2.31 for SCL and 2.92 to SiCL, and the organic carbon partition coefficient, $K_{oc}$, was 292.9 in SCL and 200.5 inSiCL. In the laboratory study, the degradation rate of pencycuron in soils followed a first-order kinetic model. The degradation rate was greatly affected by soil temperature. As soil incubation temperature was increased from 12 to $28^{\circ}C$, the residual half life was decreased from 95 to 20 days. Arrhenius activation energy was 57.8 kJ $mol^{-1}$. Furthermore, the soil moisture content affected the degradation rate. The half life in soil with 30 to 70% of field moisture capacity was ranged from 21 to 38 days. The moisture dependence coefficient, B value in the empirical equation was 0.65. In field experiments, the half-life were 26 and 23 days, respectively. The duration for period of 90% degradation was 57 days. The difference between SCL and SiCL soils varied to pencycuron degradation rates were very limited, particularly under the field conditions, even though the characteristics of both soils are varied.

Studies on the Kiln Drying Characteristics of Several Commercial Woods of Korea (국산 유용 수종재의 인공건조 특성에 관한 연구)

  • Chung, Byung-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.8-12
    • /
    • 1974
  • 1. If one unity is given to the prongs whose ends touch each other for estimating the internal stresses occuring in it, the internal stresses which are developed in the open prongs can be evaluated by the ratio to the unity. In accordance with the above statement, an equation was derived as follows. For employing this equation, the prongs should be made as shown in Fig. I, and be measured A and B' as indicated in Fig. l. A more precise value will result as the angle (J becomes smaller. $CH=\frac{(A-B') (4W+A) (4W-A)}{2A[(2W+(A-B')][2W-(A-B')]}{\times}100%$ where A is thickness of the prong, B' is the distance between the two prongs shown in Fig. 1 and CH is the value of internal stress expressed by percentage. It precision is not required, the equation can be simplified as follows. $CH=\frac{A-B'}{A}{\times}200%$ 2. Under scheduled drying condition III the kiln, when the weight of a sample board is constant, the moisture content of the shell of a sample board in the case of a normal casehardening is lower than that of the equilibrium moisture content which is indicated by the Forest Products Laboratory, U. S. Department of Agriculture. This result is usually true, especially in a thin sample board. A thick unseasoned or reverse casehardened sample does not follow in the above statement. 3. The results in the comparison of drying rate with five different kinds of wood given in Table 1 show that the these drying rates, i.e., the quantity of water evaporated from the surface area of I centimeter square per hour, are graded by the order of their magnitude as follows. (1) Ginkgo biloba Linne (2) Diospyros Kaki Thumberg. (3) Pinus densiflora Sieb. et Zucc. (4) Larix kaempheri Sargent (5) Castanea crenata Sieb. et Zucc. It is shown, for example, that at the moisture content of 20 percent the highest value revealed by the Ginkgo biloba is in the order of 3.8 times as great as that for Castanea crenata Sieb. & Zucc. which has the lowest value. Especially below the moisture content of 26 percent, the drying rate, i.e., the function of moisture content in percentage, is represented by the linear equation. All of these linear equations are highly significant in testing the confficient of X i. e., moisture content in percentage. In the Table 2, the symbols are expressed as follows; Y is the quantity of water evaporated from the surface area of 1 centimeter square per hour, and X is the moisture content of the percentage. The drying rate is plotted against the moisture content of the percentage as in Fig. 2. 4. One hundred times the ratio(P%) of the number of samples occuring in the CH 4 class (from 76 to 100% of CH ratio) within the total number of saplmes tested to those of the total which underlie the given SR ratio is measured in Table 3. (The 9% indicated above is assumed as the danger probability in percentage). In summarizing above results, the conclusion is in Table 4. NOTE: In Table 4, the column numbers such as 1. 2 and 3 imply as follows, respectively. 1) The minimum SR ratio which does not reveal the CH 4, class is indicated as in the column 1. 2) The extent of SR ratio which is confined in the safety allowance of 30 percent is shown in the column 2. 3) The lowest limitation of SR ratio which gives the most danger probability of 100 percent is shown in column 3. In analyzing above results, it is clear that chestnut and larch easly form internal stress in comparison with persimmon and pine. However, in considering the fact that the revers, casehardening occured in fir and ginkgo, under the same drying condition with the others, it is deduced that fir and ginkgo form normal casehardening with difficulty in comparison with the other species tested. 5. All kinds of drying defects except casehardening are developed when the internal stresses are in excess of the ultimate strength of material in the case of long-lime loading. Under the drying condition at temperature of $170^{\circ}F$ and the lower humidity. the drying defects are not so severe. However, under the same conditions at $200^{\circ}F$, the lower humidity and not end coated, all sample boards develop severe drying defects. Especially the chestnut was very prone to form the drying defects such as casehardening and splitting.

  • PDF

Browning and Moisture Sorption Characteristics of Rubus coreanus Prepared by Different Drying Methods (건조방법에 따른 복분자 분말의 갈변 및 흡습 특성)

  • Chung, Hun-Sik;Seong, Jong-Hwan;Lee, Young-Guen;Kim, Han-Soo;Lee, Joo-Baek;Youn, Kwang-Sup
    • Food Science and Preservation
    • /
    • v.16 no.6
    • /
    • pp.797-803
    • /
    • 2009
  • The effects of drying methods on the browning and moisture sorption characteristics of Rubus coreanus were studied. Fruits were steamed for 5 min at $100^{\circ}C$, dried by sun drying, infrared drying, or freeze drying, and powdered to a size of 20 mesh. Color values were measured and equilibrium moisture contents (EMC) were determined at $20^{\circ}C$, over a range of water activity ($a_w$) from 0.11 to 0.90. The browning indices $L^*$ and $a^*$ values were higher and lower, respectively, in freeze-dried Rubus coreanus compared with other samples. The $b^*$ value was greatest in freeze-dried Rubus coreanus. EMC tended to increase with increasing $a_w$ values, and a particularly sharp increment was observed above 0.75 $a_w$. The EMC of freeze-dried Rubus coreanus was significantly higher compared with the EMC of sun-dried and infrared-dried fruit at constant aw. The moisture sorption isotherms showed a typical sigmoid shape, and the Halsey, Kuhn, and Oswin models were the best fits for the sun-dried, infrared-dried, and freeze-dried powder isotherms, respectively. With respect to monolayer moisture content, the Guggenheim-Anderson-Boer (GAB) equation showed that the various drying methods yielded very different results, with monolayer moisture contents of 0.005 g $H_2O/g$ dry solid in infrared-dried and 0.019 g $H_2O/g$ dry solid in sun- and freeze-dried powders, respectively. These results indicate that the drying method affects the browning and moisture sorption characteristics of Rubus coreanus.

Seasonal Variations of Evapotranspiration Observed in a Mixed forest in the Seolmacheon Catchment (설마천 유역의 혼효림에서 관측된 증발산의 계절변화)

  • Kwon, Hyo-Jung;Lee, Jung-Hoon;Lee, Yeon-Kil;Lee, Jin-Won;Jung, Sung-Won;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.1
    • /
    • pp.39-47
    • /
    • 2009
  • The importance of securing water resources and their efficient management has attracted more attention recently due to water deficit. In water budget analysis, however, evapotranspiration(${\lambda}E$) has been approximated as the residual in the water balance equation or estimated from empirical equations and assumptions. To minimize the uncertainties in these estimates, it is necessary to directly measure ${\lambda}E$. In this study, using the eddy covariance technique, we have measured ${\lambda}E$ in a mixed forest in the Seolmacheon catchment in Korea from September 2007 to December 2008. During the growing season(May-July), ${\lambda}E$ in this mixed forest averaged about $2.2\;mm\;d^{-1}$, whereas it was on average $0.5\;mm\;d^{-1}$ during the non-growing season in winter. The annual total ${\lambda}E$ in 2008 was $581\;mm\;y^{-1}$, which is about 1/3 of the annual precipitation of 1997 mm. Despite the differences in the amount and frequency of precipitation, the accumulated ${\lambda}E$ during the overlapping period(i.e., September to December) for 2007 and 2008 was both ${\sim}110$ mm, showing virtually no difference. The omega factor, which is a measure of decoupling between forest and the atmosphere, was on average 0.5, indicating that the contributions of equilibrium ${\lambda}E$ and imposed ${\lambda}E$ to the total ${\lambda}E$ were about the same. The results suggest that ${\lambda}E$ in this mixed forest was controlled by various factors such as net radiation, vapor pressure deficit, and canopy conductance. In this study, based on the direct measurements of ${\lambda}E$, we have quantified the relative contribution of ${\lambda}E$ in the water balance of a mixed forest in the Seolmacheon catchment. In combination with runoff data, the information on ${\lambda}E$ would greatly enhance the reliability of water budget analysis in this catchment.

Evaluation of the Parameters of Soil Potassium Supplying Power for Predicting Yield Response, K2O Uptake and Optimum K2O Application Levels in Paddy Soils. -II. Determination of Potassium Supplying Power by Gapon equation and Kas/Kai and Response to K2O application (수도(水稻)의 가리시비반응(加里施肥反應)과 시비량추정(施肥量推定)을 위한 가리공급력(加里供給力) 측정방법(測定方法) 평가(評價) -II. Gapon식(式)과 Kas/Kai에 의한 가리공급력(加里供給力) 측정(測定)과 시비반응(施肥反應))

  • Park, Yang-Ho;Ahn, Su-Bong;Park, Chon-Suh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.4
    • /
    • pp.363-370
    • /
    • 1984
  • In order to predict the possible fertilizer requirement from the K supplying capacity of soil, the relative K activity ratio, Kas/Kai and Gapon coefficients, KG. were determined for the soil samples before flooding and at heading stage of rice in pot experiment. These parameters assumed as the K supplying capacity of soils were discussed through correlation with other factors such as grain yields or the amounts of $K_2O$ uptake by the rice plant. The results may be summarized as follows: 1. The KGo values in soils before flooding were 7.8, 6.6, and 7.1, whereas the Kas/Kai values were 1.37, 1.26 and 2.11, respectively, in clay, loam and sandy loam soils. 2. The significant yield responses to the application of potassium fertilizer were observed whenever the KG values in soils at heading stage become larger to the original KG values, regardless of any levels of fertilizer application. 3. The linear correlations between the exchangeable cation ratios [Kex./(Ca+Mg) ex.:me/100g] in soils and the potassium activity ratios ($[K^+]/\sqrt{[Ca^{{+}{+}}+Mg^{{+}{+}}]}$: mole/l) in equilibrium solutions were observed with different linear gradients according to the soil properties. 4. The Kas/Kai in the soils, estimated prior to the experiment, showed high correlations with the grain yields or the amounts of $K_2O$ uptake in the all treatments, while the Kas/Kai and the KGo in the soils at heading stage showed high correlations with the grain yields or the amounts of $K_2O$ uptake in only N 15 Kg/10a treatments. 5. The Kas/Kai and the KGo values determined in the soil at heading stage of rice showed high negative correlation each other and they could be used as soil factors for predicting potassium fertilizer requirement.

  • PDF

Potassium and Clay Minerals in Upland Soils (밭 토양(土壤)의 점토(粘土) 광물(鑛物)과 가리(加里))

  • Kim, Tai-Soon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.3
    • /
    • pp.135-151
    • /
    • 1977
  • The present paper summerizes the studies on clay mineralogical characteristics of Korean soil, relationship between potassium and clay minerals, potassium release pattern of clay minerals and utilization of clay minerals for soil conditioner and fertilizers, which have been carried out in this laboratory. 1. The red yellow podzolic soil is mostly abundant in the upland of Korea and mainly consists of halloysite and weathered intermediates of mica such as illite and vermiculite. 2. With regard to soil parent material, kaolin mineral occurs abundant in soils derived from granite and granite gneiss. Mica is dominant in basaltic soil. The main clay mineral of the soil, originated from the Tertiary, is found montmorillonite and the volcanic soil of Jeju Island has plenty of allophane as its main clay mineral. 3. It is confirmed that the soil fertility depends on the composition of clay minerals. The red yellow podzolic soil, containing lot of kaolin, shows low productivity while the montmorillonite soil has higher productivity. 4. The release rate of solid phase potassium (micas and fixed potassium) follows the 1st order reaction equation in the equilibrium solution of $IN-NH_4OAc$. The potassium release constant is positively correlated with the mica content of the clay but negatively correlated with the content of $14.5{\AA}$ minerals. On the other hand, the potassium release constant has very high correlation with the ratio(Kex/Kt) of exchangeable potassium(Kex) to total potassium(Kt). 5. It is also found that Kex/Kt has rather high correlation with the content of mica and $14.5{\AA}$ minerals existed in the clay as well as the mica content of the soil.

  • PDF

Adsorption of Anionic Species on Clay Minerals (점토광물에 의한 음이온 화학종 흡착 특성)

  • Moon, Jeong-Ho;Choi, Choong-Ho;Ryu, Byong-Ro;Kim, Cheol-Gyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.10
    • /
    • pp.1058-1064
    • /
    • 2005
  • This research was designed to investigate the removal of anionic species, such as $F^-$, $Cl^-$ and ${NO_3}^-$, by adsorption on the clay minerals. Bentonite, $Ca^{2+}$ or $Na^+$ ion exchanged bentonite and montmorillonite, such as KSF and K10 from Sigma Aldrich, were used as the adsorbent. The component of five inorganic adsorbent was analyzed by XRF and XRD and the concentration of anion was measured by ion chromatography. From the experimental results, it was shown that the adsorption equilibrium was attained after 8-24 hours. For the amount of 6 g of each adsorbent, the adsorption capacities of $F^-$ and ${NO_3}^-$ on KSF was the largest as $825\;{\mu}g/g$ and $707\;{\mu}g/g$ respectively and that of $F^-$ on $Ca^{2+}$ ion exchanged bentonite was $255\;{\mu}g/g$ and that of ${NO_3}^-$ on K10 was $103\;{\mu}g/g$. In general, the efficiency of removal for the anionic species was increased with increasing of the amount of the adsorbent. Especially, for the amount of 6 g of KSF, the efficiency of removal for $F^-$ and ${NO_3}^-$ was 99% and 95% respectively. But, for all adsorbents, the efficiency of removal for $Cl^-$ was less than 9%. Also, a Freundlich equation was used to fit the acquired experimental data. As the result, for the $F^-$ and ${NO_3}^-$ on KSF, Freundlich constants, K, was respectively 1.09 and $0.45\;[mg/g][L/mg]^{1/n}$ and the adsorption intensity(1/n) was determined to be 0.08 and 0.27 respectively.