• Title/Summary/Keyword: equilibrium energy dissipation

Search Result 22, Processing Time 0.016 seconds

Seismic equivalent linear response of a structure by considering soil-structure interaction: Analytical and numerical analysis

  • Maroua Lagaguine;Badreddine Sbartai
    • Structural Engineering and Mechanics
    • /
    • v.87 no.2
    • /
    • pp.173-189
    • /
    • 2023
  • For a given structural geometry, the stiffness and damping parameters of the soil and the dynamic response of the structure may change in the face of an equivalent linear soil behavior caused by a strong earthquake. Therefore, the influence of equivalent linear soil behavior on the impedance functions form and the seismic response of the soil-structure system has been investigated. Through the substructure method, the seismic response of the selected structure was obtained by an analytical formulation based on the dynamic equilibrium of the soil-structure system modeled by an analog model with three degrees of freedom. Also, the dynamic response of the soil-structure system for a nonlinear soil behavior and for the two types of impedance function forms was also analyzed by 2D finite element modeling using ABAQUS software. The numerical results were compared with those of the analytical solution. After the investigation, the effect of soil nonlinearity clearly showed the critical role of soil stiffness loss under strong shaking, which is more complex than the linear elastic soil behavior, where the energy dissipation depends on the seismic motion amplitude and its frequency, the impedance function types, the shear modulus reduction and the damping increase. Excellent agreement between finite element analysis and analytical results has been obtained due to the reasonable representation of the model.

A Study on the Shape-Decision Technique of Membrane Structures According to the Design Process and Shape Analysis (건축 설계프로세스와 형상해석을 통한 막 구조물의 형상결정 방안에 관한 연구)

  • Park, Sun-Woo;Kim, Seung-Deog;Shon, Su-Deok;Jeong, Eul-Seok
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.2 s.24
    • /
    • pp.115-124
    • /
    • 2007
  • The initial shape is arrived at by a self-formation process, which accomplishes a form in the natural world, or is determined analytically by considering the equilibrium of initial stress only. Therefore, the self-formation process, which accomplishes a form in the natural world is grasped and the types of modeling techniques available to find the shapes of soft structures are well investigated and classified. To establish a form-finding modeling techniques, the models of string, soap film, fabric, rubber, plaster, and etc. are used. These modeling techniques can be used as a method of understanding the characteristics of structures when the material of model shows similar characteristics. Generally, the model test confirms the structure based on numerical analysis, at the same time it is important preceding process to develop such a program. With the above process, the relationship between model test and numerical analysis becomes a feedback process. Therefore, in this study, two examples which have been accomplished from such a technique are investigated and considered according to modeling process.

  • PDF