• Title/Summary/Keyword: equilibria

Search Result 342, Processing Time 0.019 seconds

Ore Geology of Skarn Ore Bodies in the Kasihan Area, East Java, Indonesia (인도네시아 까시한지역 스카른광체의 광상학적 특성)

  • Han, Jin-Kyun;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.45 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • Copper-zinc-bearing skarns of the Kasihan area developed at limestone layers in the sedimentary facies of the Late Oligocene Arjosari Formation. The skarns consist mainly of fine-grained, massive clinopyroxene-garnet, garnet, garnet-epidote, and epidote skarns. Most copper and zinc(-lead) ore mineralization occur in the clinopyroxene-garnet and garnetepidote skarn, respectively. Clinopyroxene occurs as a continuous solid solution of diopside and hedenbergite (from nearly pure diopside up to ${\approx}34$ mole percent hedenbergite), with a maximum 28.2 mole percent johannsenite component. The early and late pyroxenes of Kasihan skarns are diopsidic and salitic, respectively. They fall in the fields typical Cu- and Zn-dominated skarns, respectively. Garnet displays a relatively wide range of solid solution between grossular and andradite with up to ${\approx}2.0$ weight percent MnO. Garnet in early pyroxene-garnet skarn ranges from 49.1 to 91.5 mole percent grossular (mainly ${\geq}78$ mole % grossular). Garnets in late garnet and garnet-epidote skarns range from 2.8 to 91.4 mole percent grossular (mainly ${\geq}70$ mole % for garnet skarn). Epidote compositions indicate solid solutions of clinozoisite and pistacite varying from 65.8 to 76.2 mole percent clinozoisite. Phase equilibria indicate that skarn evolution was the result of interaction of water-rich fluids ($X_{CO_2}{\leq}0.1$) with original lithologies at ${\approx}0.5$ kb with declining temperature (early clinopyroxene-garnet and garnet skarn, ${\approx}450$ to $370^{\circ}C$; late garnet-epidote and epidote skarn, ${\approx}370$ to $300^{\circ}C$).

A Study on Iron Manufacturing and Technology through Analysis Reports of Iron artifacts in the Baekje Area (유물분석 자료를 통한 백제지역의 제철과 철기 제작기술 연구)

  • Kim, Soo-Ki
    • Journal of Conservation Science
    • /
    • v.30 no.4
    • /
    • pp.335-343
    • /
    • 2014
  • This study classified the result of non-metallic inclusion analysis and result of microstructure investigation on the ironware excavated in the Baekje region into Han River, Geum River, and Yeongsan River to estimate the iron making temperature and study the characteristics of regional and temporal characteristics of the heat treatment technology and steel making technology. Regardless of era, bloom iron and sponge iron are judged to be the major method for making as a directreduction process in all three regions. The result of the reinterpretation of the non-metallic inclusion by the oxide ternary constitutional diagram suggest that the temperature inside of the furnace is estimated to be between $1,100{\sim}1,300^{\circ}C$ while making the steel. The magnetic iron ores are the major raw material of steel ore and irons with high $TiO_2$ are estimated to use iron sands. Ironware with $CaO/SiO_2$ rate higher than 0.4% are considered to have artificially added the flux of calcareous materials. It was found that the iron making method is the solid caburizing-steel which caburizes low-carbon steels by the CO gas and $CO_2$ gas created when heating the forging furnace with charcoal. Also, the ironware manufacturers in the Baekje during 3rd century recognized the heat treatment technology as they performed carburizing process and quenching to intentionally increase the strength of necessary parts.

Phase equilibria between coexisting minerals in the talc ores and process of talc formation in the Daeheung Talc Deposits, Korea (대흥활석광상에 있어서 공존하는 광물의 상평형과 활석화 과정)

  • 이상헌
    • The Journal of the Petrological Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.156-170
    • /
    • 1994
  • The talc ore deposits can be divided into chloritic and dolomitic ores according to mineral assemblages. The former is mainly composed of chlorite and talc accompanied with dolomite, muscovite and opaque mineral, and the latter of dolomite and talc with serpentine, calcite and magnesite in places. Talc was originated from chlorite and serpentine. Carbonate minerals were formed either directly from the introduced hydrothermal solution or secondarily as a by-product of steatitization of chlorite and serpentine. The process of talc formation may be governed by the chemical composition of the host rocks and the amount and/or chemical composition of the hydrothermal solution which may be different in places. However, the representative reactions producing talc from chlorite and serpentine are as follows : (1) chlorite+$Mg^{++}+Si^{4+}+H_2O$=talc, (2) chlorite+$Mg^{++}+Si^{4+}+Ca^{++}+CO_2+O_2+H_2O$=talc+ dolomite+ magnesite, and (3) serpentine +$Mg^{++}+Fe^{++}+Si^{4+}+Ca^{++}+CO_2+H_2O$=talc+dolomite. The reactions indicate that the carbonate minerals can be formed when the hydrothermal solution have high $fO_2$ and $fCO_2$. The steatitization might be proceeded by the hydrothermally metasomatic reaction between chlorite schist or chlorite gneiss intercalated in the granitic gneiss and hydrothermal solution accompanied to the wet granitization.

  • PDF

The Anion Exchange Chromatographic Studies on the Polymerization Equilibria of Molybdate and Tungstate and the Production of APT (음이온 교환크로마토그래피에 의한 몰리브덴산과 텅스텐산의 중합, 평형 및 APT 제조에 관한 연구)

  • Cha Ki Won;Park Kee Chae
    • Journal of the Korean Chemical Society
    • /
    • v.19 no.4
    • /
    • pp.225-232
    • /
    • 1975
  • The elution behaviour of molybdate and tungstate through anion exchange column has been studied at the various pH. A discussion is made to evaluate the equilibrium constants of the polymerization of these acids comparing with the behaviour of chromate ion and dichromate ion. The eqailibrium constants found at $20^{\circ}$ are $K = 4{\times}10^{53} for 7MoO_4^{2-} + 8H^+ {\longleftrightarrow} Mo7O_{24}^{6- }+ 4H_2O$$ K = 3{\times}10^{54} for 6WO_4^{2-} + 7H^+ {\longleftrightarrow} HW6O_{21}^{5-} + 7H_2O$ referring to this results the conditions of separation of tungstate and molybdate are obtained. iThe quantitative separations of carbonate, molybdate and tungstate from the pregnant solution have been established by anion exchange chromatography, using the $22 cm{\times}44.27 cm^2$ column of Rexyn 201. The optimum eluents for the quantitative separation of those ions are as follows; 0.2M solution of sodium chloride at pH 8 for carbonate, the mixture of 0.5 M ammonium chloride and 0.05 M sodium sulfate at pH 5 for molybdate and 0.5 M solution of ammonium chloride at pH 10 for tungstate. Tungstate is directly recovered from the pregnant solution as a form of ammonium paratungstate, by eluting with ammonium chloride solution.

  • PDF

Chemical Equilibria of Lanthanides{Ln(Ⅲ)=Pr, Sm, Gd, Dy}-Macrocyclic Complexes with Auxiliary Ligands in $CH_3OH$(PartⅡ):Study of the Coordination of Oxygen-Containing Bases. ($CH_3OH$ 용매에서 란탄족 원소{Ln(Ⅲ)=Pr, Sm, Gd, Dy}-거대고리 착물과 보조 리간드 간의 화학평형 (제2보): 주게원자가 산소인 염기를 중심으로 고찰.)

  • Byun, Jong Chul;Park, Yu Chul;Han, Chung Hun
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.6
    • /
    • pp.628-635
    • /
    • 1999
  • Direct preparative method of 2,6-diformyl-p-cresol and 2-hydroxy-3-hydroxy-5-methylbenzaldehyde from 2,6-bis(hydroxymethyl)-4-methylphenol using activated $Mn(IV)O_2$ was described. Hexadentate compartmental Iigands, $H_4L[A]\;and\; H_4L[B]$ were prepared by condensation reactions of 2-hydroxy-3-hydroxy methyl-5-methylbenzaldehyde with ethylenediamine and 1,3-diaminopropane respectively. By the reaction of macrocycle($H_4[20]DOTA$) with Ln(III) nitrate {Ln(III)=Pr, Sm, Cd, Dy }, discrete mononuclear Ln(III) complexes of the type $[Ln(H_2[20]DOTA)(ClO_4)(H_2O)]\;{\cdot}\;3H_2O$ were synthesized in the solid state. $[Ln([20]DOTA)(NO_3)(H_2O)](NO_3)_2\;{\cdot}\;xH_2O$ was placed in methanol for 2 days, and $[Ln([20]DOTA)(NO_3)(CH_3OH)]^{2+}$ was formed. The equilibrium constants(K) for the substitution of coordinated $CH_3OH$ in the Ln-[20]DOTA complexes by various auxiliary ligand, $L_a$(=salicylic acid, p-chlorobenzoic acid, benzoic acid, acetic acid, 4-bromophenol) were determined spectroscopically at 25$^{\circ}C$ and 0.1M $NaClO_4$. The K values calculated were in the order of salicylic acid > p-chlorobenzoic acid > benzoic acid > acetic acid > 4-bromophenol, while pKa of auxiliary ligands was in the opposite trend.

  • PDF

High Pressure Binary Phase Equilibria Measurements of α-Tetralol with Carbon Dioxide (이산화탄소와 α-Tetralol과의 2성분계 고압상평형 측정)

  • Byun, Hun-Soo;Kim, Choon-Ho;Hwang, Young-Gi;Kwak, Chul
    • Applied Chemistry for Engineering
    • /
    • v.7 no.1
    • /
    • pp.67-74
    • /
    • 1996
  • The binary phase equilibrium experiments of carbon dioxide/1,2,3,4 ${\alpha}$-tetrahydro-1-naphthol(${\alpha}$-tetralol) system were conducted to get phase equilibrium and mixture density data at 313.2K, 343.2K and 373.2K and within pressure ranges of 6.0 MPa to 35.0MPa. The phase equilibrium apparatus was type that circulated the vapor and liquid phase, the expended volume measuring system was adopted to microsampling technique for the analysis. The phase equilibrium and mixture density data were obtained for carbon dioxide/${\alpha}$-tetralol system from liquid and vapor phase. The mole fraction of carbon dioxide in liquid phase decreases and the mole fraction of ${\alpha}$-tetralol in vapor phase increases at constant pressure according to increment of temperature, and both the densities of the vapor and liquid phase approach to the mixture critical density as the pressure increases at any temperature. For she thermodynamic analysis, the experimental data were correlated with Peng-Robinson equation in cubic equation of state and compared to theoretical values of carbon dioxide/${\alpha}$-tetralol system. The AAD result was in the range of 1.08%~8.93% in the case of K(1), and was in the range of 45.71%~72.34% in the case of K(2).

  • PDF

Process Design of Low Energy Azeotropic and Extractive Distillation Process for Bioethanol Recovery (바이오에탄올 회수를 위한 에너지 절약형 공비증류공정과 추출증류공정)

  • Kim, Jong Hwan;Lee, Doug Hyung;Hong, Sung Kyu;Park, Sang Jin
    • Korean Chemical Engineering Research
    • /
    • v.46 no.2
    • /
    • pp.348-355
    • /
    • 2008
  • Recently, an understanding of new sources of liquid hydrocarbons such as bio-ethanol is economically very important. The present dissertation is also designed with purpose of developing the energy-saving process for the separation of bio-ethanol. In order to illustrate the predictability of proposed process for the separation of bio-ethanol, the experimental data from literatures and real plant data are used. Application of the thermodynamics of multicomponent mixtures and phase equilibria to the extractive distillation process with syntheses of heat exchanger network has enabled the development of energy-saving process for different separating agents. Developed process is capable of minimizing the energy usage and the environmental effect. This extractive process is also able to properly describe the effect of impurities, the choice of separating agent. Simulation results of extractive distillation using ethylene glycol show that impurities do not affect to extractive distillation operation and agent, ethylene glycol, was recycled without any loss. It is possible that extraction distillation has various heat network for anhydride ethanol and recovery of ethanol is maximized. Ethylene glycol as separating agent has a high boiling point to eliminate azeotropic point and on the contrary solubility of agent is low to be almost completed recovered. Proposed process is also the energy efficient process configuration in which 99.85mole% anhydride ethanol can be produced with low energy of 1.37198 (kg steam/kg anhydride ethanol).

Purification of p-Dioxanone from p-Dioxanone and Diethylene Glycol Mixture by a Layer Melt Crystallization (경막형 용융결정화에 의한 파라디옥사논과 디에틸렌글리콜 혼합물로부터 파라디옥사논의 정제)

  • Kim, Sung-Il;Kim, Chul-Ung;Park, So-Jin
    • Korean Chemical Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.595-602
    • /
    • 2005
  • In order to purify diethylene glycol as main impurity included in p-dioxanone, SLE (solid-liquid equilibria) and mixture density on two components system of p-dioxanone and diethylene glycol were measured and a layered melt crystallization with seed has been applied. The SLE of p-dioxanone and diethylene glycol were a simple eutectic system and the temperature and PDX concentration at eutectic point were 0.08 and 246 K, respectively. Densities of their binary mixtures were well fitted by the best correlation equation, ${\rho}_l=0.405+1.361x+0.002T-0.004xT$. In the melt crystallization, the growth rate (G) was proportional to the 1.5th power of the subcooling degree. The effective distribution coefficient ($K_{eff}$) as the degree of impurity removal was observed to increase with increasing the growth rate and initial p-dioxanone concentration. And also, $K_{eff}$ was correlated with Z function using Wintermantel's model such as $K_{eef}=-0.0604+6.392{\times}Z$. Finally, PDX purity through the optimization of this process can be obtained over 99%.

Adsorption Characteristics of Co(II), Ni(II), Cr(III) and Fe(III) Ions onto Cation Exchange Resin - Application to the Demineralizing Process in a Primary Coolant System of PWR (양이온교환수지에 대한 Co(II), Ni(II), Cr(III), Fe(III) 이온의 흡착 특성 - 원자로 일차 냉각재 계통내 탈염 공정에의 적용)

  • Kang, So-Young;Lee, Byung-Tae;Lee, Jong-Un;Moon, Seung-Hyeon;Kim, Kyoung-Woong
    • Journal of Radiation Protection and Research
    • /
    • v.27 no.1
    • /
    • pp.27-35
    • /
    • 2002
  • Characteristics of Amberlite IRN 77, a cation exchange resin, and the mechanisms of its adsorption equilibria with Co(II), Ni(II), Cr(III) and Fe(III) ions were investigated for the application of the demineralizing process in the primary coolant system of a pressurized water reactor (PWR). The optimum dosage of the resin for removal of the dissolved metal ions at $200mgL^{-1}$ was 0.6 g for 100 mL solution. Most of each metal ion was adsorbed onto the resin in an hour from the start of the reaction. Each metal adsorption onto the resin could be well represented by Langmuir isotherms. However, in the case of Fe(III) adsorption, continuous formation of Fe-oxide or -hydroxide and its subsequent precipitation inhibited the completion of the equilibrium between the metal and the adsorbent Cobalt(II) and Ni(II), which have an equivalent electrovalence, were adsorbed to the resin with a similar adsorption amount when they coexisted in the solution. However, Cr(III) added to the solution competitively replaced Co(II) and Ni(II) which were already adsorbed onto the resin, resulting in desorption of these metals into the solution. The result was likely due to a higher adsorption affinity of Cr(III) than Co(II) and Ni(II). This implies that the interactively competitive adsorption of multi-cations onto the resin should be fully considered for an efficient operation of the demineralizing ion exchange process in the primary coolant system.

Sorption Kinetics of Hydrophobic Organic Compounds in Wetland Soils (습지 토양에서 소수성 유기화합물질의 흡착 동력학)

  • Park, Je-Chul;Shin, Won-Sik
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.3 s.104
    • /
    • pp.295-303
    • /
    • 2003
  • Sorption kinetics of hydrophobic organic compounds (chlorobenzene and phenanthrene) in natural wetland soils was investigated using laboratory batch adsorbers. One -site mass transfer model (OSMTM) and two compartment first-order kinetic model (TCFOKM) were used to analyze sorption kinetics. Analysis of OSMTM reveals that apparent sorption equilibria were obtained within 10 to 75 hours for chlorobenzene and 2 hours for phenanthrene, respectively. For chlorobenzene, the sorption equilibrium time for surface soil was longer than that of deeper soil presumably due to physico-chemical differences between the soils. For phenanthrene, however, no difference in sorption equilibrium time was observed between the soils. As expected from the number of model parameters involved, the three-parameter TCFOKM was better than the two-parameter OSMTM in describing sorption kinetics, The fraction of fast sorption ($f_1$) and the first-order sorption rate constants for fast ($k_1$)and slow ($k_2$) compartments were determined by fitting experimental data to the TCFOKM. The results of TCFOKM analysis indicate that the sorption rate constant in the fast compartment($k_1$) was much greater than that of slow fraction($k_2$) . The fraction of the fast sorption ($f_1$) and the sorption rate constant in the fast compartment($k_1$) were increasing in the order of increasing $k_{ow}$, phenanthrene > chlorobenzene. The first-order sorption rate constants in the fast ($k_1$) and slow ($k_2$) compartments were found to vary from $10^{-0.1}\;to\;-10^{1.0}$ and from $10^{-4}\;to-10^{-2}$, respectively.