• Title/Summary/Keyword: equation of live load distribution factors

Search Result 5, Processing Time 0.02 seconds

Live Load Distribution in Prestressed Concrete I-Girder Bridges (I형 프리스트레스트 콘크리트 거더교의 활하중 분배)

  • Kim, Kwang-Yang;Kang, Dae-Hui;Lee, Hwan-Woo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.288-293
    • /
    • 2008
  • The standard prestressed concrete I-girder bridge (PSC I-girder bridge) is one of the most prevalent types for small and medium bridges in Korea. When determining the member forces in a section to assess the safety of girder in this type of bridge, the general practice is to use the simplified practical equations or the live load distribution factors proposed in design standards rather than the precise analysis through the finite element method or so. Meanwhile, the live load distribution factors currently used in Korean design practice are just a reflection of overseas research results or design standards without alterations. Therefore, it is necessary to develop an equation of the live load distribution factors fit for the design conditions of Korea, considering the standardized section of standard PSC I-girder bridges and the design strength of concrete. In this study, to develop an equation of the live load distribution factors, a parametric analysis and sensitivity analysis were carried out on the parameters such as width of bridge, span length, girder spacing, width of traffic lane, etc. Then, an equation of live load distribution factors was developed through the multiple linear regression analysis on the results of parametric analysis. When the actual practice engineers design a bridge with the equation of live load distribution factors developed here, they will determine the design of member forces ensuring the appropriate safety rate more easily. Moreover, in the preliminary design, this model is expected to save much time for the repetitive design to improve the structural efficiency of PSC I-girder bridges.

  • PDF

Live Load Distribution for Prestressed Concrete I-Girder Bridges (I형 프리스트레스트 콘크리트 거더교의 활하중 분배)

  • Kim, Kwang-Yang;Lee, Hwan-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.119-120
    • /
    • 2009
  • The Live load distribution factors currently used in the standard prestressed concrete I-girder bridge are just a reflection of overseas design standards. Therefore, it is necessary to develop an equation of the live load distribution factors fit for the design conditions of Korea, considering the standardized section and the design strength of concrete. In this study, the major variables to determine of distribution factors were selected and an equation of live load distribution factors was developed.

  • PDF

Live Load Distribution in Prestressed Concrete I-Girder Bridges (I형 프리스트레스트 콘크리트 거더교의 활하중 분배)

  • Lee, Hwan-Woo;Kim, Kwang-Yang
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.4
    • /
    • pp.325-334
    • /
    • 2008
  • The standard prestressed concrete I-girder bridge (PSC I-girder bridge) is one of the most prevalent types for small and medium bridges in Korea. When determining the member forces in a section to assess the safety of girder in this type of bridge, the general practice is to use the simplified practical equations or the live load distribution factors proposed in design standards rather than the precise analysis through the finite element method or so. Meanwhile, the live load distribution factors currently used in Korean design practice are just a reflection of overseas research results or design standards without alterations. Therefore, it is necessary to develop an equation of the live load distribution factors fit for the design conditions of Korea, considering the standardized section of standard PSC I-girder bridges and the design strength of concrete. In this study, to develop an equation of the live load distribution factors, a parametric analysis and sensitivity analysis were carried out on the parameters such as width of bridge, span length, girder spacing, width of traffic lane, etc. As a result, the major variables to determine the size of distribution factors were girder spacing, overhang length and span length in case of external girders. For internal adjacent girders, the determinant factors were girder spacing, overhang length, span length and width of bridge. For internal girders, the factors were girder spacing, width of bridge and span length. Then, an equation of live load distribution factors was developed through the multiple linear regression analysis on the results of parametric analysis. When the actual practice engineers design a bridge with the equation of live load distribution factors developed here, they will determine the design of member forces ensuring the appropriate safety rate more easily. Moreover, in the preliminary design, this model is expected to save much time for the repetitive design to improve the structural efficiency of PSC I-girder bridges.

Evaluation of Rating Factor for Main Components in Steel Cable-Stayed Bridges (강사장교 주요부재의 내하율 산정)

  • Choi, Dong-Ho;Yoo, Hoon;Shin, Jay-In;Song, Won-Keun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.6
    • /
    • pp.163-176
    • /
    • 2006
  • The paper proposes rating equations for main components such as girders, towers and cables in cable-stayed bridges. Load rating equations for girders and towers are proposed using stress and stability equations and load rating equation for cables is presented. A moving load analysis is performed and distribution types of live loads are determined for the cases of a maximum axial tensile force, a maximum axial compressive force, a maximum positive and a negative moment for each component. The Dolsan Grand bridge is used to verify a validity of proposed equations, The conventional rating equation overestimates rating factors of girders and towers in the Dolsan Grand bridge, whereas proposed rating equations properly reflect the axial-flexural interaction behavior of girders and towers in cable-stayed bridges.

Reliability Analysis of Concrete Road Bridge Designed with Different Resistance Factor Format (콘크리트 도로교 설계를 위한 저항계수 체계별 신뢰도 분석)

  • Paik, In-Yeol;Sang, Hee-Jung
    • International Journal of Highway Engineering
    • /
    • v.13 no.2
    • /
    • pp.147-157
    • /
    • 2011
  • As a background study to apply the reliability-based resistance factors to the domestic concrete bridge design code, a comparative study is conducted for the design results and the reliability indexes obtained by adopting different resistance factor formats to yield the design strength of concrete structures. The design results which are calculated by applying the section resistance factors of the current domestic design code and the material resistance factors of Eurocode are compared for the concrete beam bridge. The reliability index is calculated by considering the uncertainties involved in material, dimension and strength equation during the design procedure to get the strength of concrete structure. Also, the sensitivity analysis is performed to figure out which design variables have great impact on the reliability index. The resistance factors of the current domestic bridge design code, AASHTO LRFD and Eurocode are applied to the bridge design for flexure and shear strength and the results show that the resistance factors of the domestic code give the largest reliability indexes. It is observed that the probabilistic distribution of the live load makes difference for the reliability index and the yield strength of reinforcing steel and the live load have great impact on the reliability of both flexural and shear strength of concrete beam through the sensitivity analysis.