• Title/Summary/Keyword: equation of failure condition

Search Result 55, Processing Time 0.02 seconds

Assessment of Design Criteria for Bearing Capacity of Rock Socketed Drilled Shaft (암반에 근입된 현장타설말뚝의 지지력 산정기준에 대한 평가)

  • 백규호;사공명
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.95-105
    • /
    • 2003
  • The existing design criteria f3r the estimation of ultimate bearing capacity of drilled shaft socketed into rock masses are mainly obtained from the ultimate pile load capacities, which are determined by inconsistent failure criteria. Therefore, these design criteria generally produce difffrent predictions even for drilled shaft in the same condition. In this paper, the accuracies of the existing design criteria are investigated to develop an optimized design process for drilled shaft socketed into rock masses. Reasonable and consistent ultimate capacities of drilled shafts socked into rock masses, necessary far the check of accuracies of predictions, are determined by applying a specific failure criterion to a total of 11 pile load test results. A comparison between the predicted and the measured load capacities shows that ultimate base load capacities calculated from Zhang and Einstein's equation and NAVFAC are close to the measured values. Rosenberg and Journeaux's equation produces satisfactory prediction f3r ultimate side load capacity.

Effect of Microporosity on High Cycle Fatigue Property of A356 Alloy (A356 합금의 고주기 피로특성에 미치는 미소기공율의 영향)

  • Yoo, Suk-Jong;Lee, Choong-Do
    • Journal of Korea Foundry Society
    • /
    • v.31 no.4
    • /
    • pp.198-204
    • /
    • 2011
  • The present study was aimed to investigate the dependence of fatigue property on microporosity variation of low-pressure die-cast (LPDC) A356 alloy. The fatigue property of A356 alloy was evaluated through high cycle fatigue test, and the microporosity-terms used were the fractographic porosity measured from SEM observation on fractured surface and the volumetric porosity obtained through the density measurement using Archimedes's principle. The number of cycles to failure of A356 alloys depends obviously upon the variation of fractographic porosity, and can describe in terms of the defect susceptibility which depends on the microporosity variation at a given value of stress amplitude. The modified Basquin's equation was suggested through the combination of microporosity variation and static maximum tensile stress to fatigue strength coefficient. Using modified Basquin's equation, it could suggest that the maximum values of fatigue strength coefficient and exponent achievable in defect-free condition of A356 alloy are 265 MPa, -0.07, respectively.

Thermal stress of concrete structure at high temperature considering inelastic thermal strain change (고온에서의 비선형 변형도를 고려한 콘크리트 구조물에서의 열응력 분포)

  • 강석원;홍성걸;신영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1145-1150
    • /
    • 2000
  • Concrete behaves as ductile material at high temperature. The existing stress-strain relationship is not valid at high temperature condition. Thus, stress-strain curve of concrete at high temperature is re-established by modifying Saenz's suggestion in this study. A constitutive model of concrete subjected to elevated temperature is also suggested. The model consists of three components; free thermal stain, mechanical strain and thermal creep strain. As the temperature increase, the thermal creep becomes more critical to the failure of concrete. The thermal creep strain of concrete is derived from the modified power-law relation for the steady state creep. The proposed equation for thermal creep employs a Dorn's temperature compensated time theorem

  • PDF

Earth Pressure Acting on the Cylindrical Retaining Wall of a Shaft in Cohesionless Soils : Study on the Application by Model Test (사질토 지반의 원형수직구에 설치된 흙막이벽에 작용하는 토압 : 적용성 연구)

  • 천병식;신영완;문경선
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.4
    • /
    • pp.75-88
    • /
    • 2004
  • It is known that the earth pressure acting on the cylindrical retaining wall in cohesionless soils is small than that acting on the retaining wall in plane strain condition due to three dimensional arching effect. In this study, the earth pressure equation considering the earth pressure decrease by horizontal and vertical arching effects, overburden, wall friction, and failure surface slope is proposed. For the purpose of verifying the applicability of proposed equation, model test is performed with apparatuses that can control wall displacement, wall friction, and wall shape ratio. Influence of each factor on the active earth pressure acting on the cylindrical retaining wall is analyzed according to the model test in constant wall displacement condition. The comparison of calculated results with measured values shows that the proposed equations satisfactorily predict the earth pressure distribution on the cylindrical retaining wall.

Internal Confining Stress of Internally Confined Hollow Columns under Compressive Load (압축을 받는 내부 구속 중공 RC 기둥의 내부 구속력)

  • Won, Deok Hee;Han, Taek Hee;Kim, Seungjun;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.3
    • /
    • pp.243-254
    • /
    • 2013
  • Internally Confined Hollow RC(ICH RC) column consisted of concrete, transverse reinforcement, longitudinal reinforcement, and inner tube. It had good strength and ductility by core concrete was become triaxial confining state with transverse reinforcement and inner tube. There were two confining stress as external confining stress and internal confining stress in an ICH RC column. While external confining stress was researched by former researchers, internal confining stress has not researched. In this paper, confining stress of both Hollow RC column and ICH RC column was investigated using FEA program. Relation between theoretical confining stress and internal confining stress was drawn by analysis results. Modified failure condition equations of inner tube were suggested to base on failure condition equations of inner tube by former researcher. When thickness of inner tube was calculated by modified equations, it could be economic because thickness of inner tube was reduced 50% compared with former researcher equations in order to same confining stress.

A Study on the Attribute Analysis of Software Reliability Model with Shape Parameter Change of Infinite Fault NHPP Lomax Life Distribution (무한고장 NHPP Lomax 수명분포의 형상모수 변화에 따른 소프트웨어 신뢰성 모형의 속성 분석에 관한 연구)

  • Min, Kyung-il
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.8
    • /
    • pp.20-26
    • /
    • 2019
  • In this study, the optimal shape parameter condition is presented after analyzing the attributes of the software reliability model according to the change of the shape parameter of Loma life distribution with infinite fault NHPP. In order to analyze the software failure phenomena, the parametric estimation method was applied to the Maximum Likelihood Estimation method, and the nonlinear equation was applied to the bisection method. As a result, it was found that when the attributes according to the change of the shape parameter are compared, the smaller the shape parameter is, the better the prediction ability of the true value, and reliability attributes are efficient. Through this study, it is expected that software developers can increase reliability by preliminarily grasping the type of software failure based on shape parameter, and can be used as basic information to improve the software reliability attributes.

Relationship between Tangential Cohesion and Friction Angle Implied in the Generalized Hoek-Brown Failure Criterion (일반화된 Hoek-Brown 파괴조건식에 내포된 접선점착력과 접선마찰각의 상관성)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.24 no.5
    • /
    • pp.366-372
    • /
    • 2014
  • The generalized Hoek-Brown (H-B) function provides a unique failure condition for a jointed rock mass, in which the strength parameters of rock mass are deduced from the intact values by use of the GSI value. Since it is actually the only failure criterion which accounts for the rock mass conditions in a systematic manner, the generalized H-B criterion finds many applications to the various rock engineering projects. Its nonlinear character, however, limits more active usage of this criterion. Accordingly, many attempts have been made to understand the generalized H-B condition in the framework of the M-C function. This study presents the closed-form expression relating the tangential cohesion to the tangential friction angle, which is derived by the non-dimensional stress transformation of the generalized H-B criterion. By use of the derived equation, it is investigated how the relationship between the tangential cohesion and friction angle of the generalized H-B criterion varies with the quality of rock masses. When only the variation of GSI value is considered, it is found that the tangential friction angle decreases with the increase of GSI, while the tangential cohesion increases with GSI value.

Calculation of Failure Load of V-shaped Rock Notch Using Slip-line Method (Slip-line법을 이용한 V형 암석 노치의 파괴하중 계산)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.30 no.4
    • /
    • pp.404-416
    • /
    • 2020
  • An analytical procedure for calculating the failure load of a V-shaped rock notch under two-dimensional stress conditions was developed based on the slip-line plastic analysis method. The key idea utilized in the development is the fact that the α-line, one of the slip-lines, extends from the rock notch surface to the horizontal surface outside the notch when the rock around the notch is in the plastic state, and that there exists an invariant which is constant along the α-line. Since the stress boundary condition of the horizontal surface outside the rock notch is known, it is possible to calculate the normal and shear stresses acting on the rock notch surface by solving the invariant equation. The notch failure load exerted by the wedge was calculated using the calculated stress components for the notch surface. Rock notch failure analysis was performed by applying the developed analytical procedure. The analysis results show that the failure load of the rock notch increases with exponential nonlinearity as the angle of the notch and the friction of the notch surface increase. The analytical procedure developed in this study is expected to have applications to the study of fracture initiation in rocks through wedge-shaped notch formation, calculation of bearing capacity of the rock foundation, and stability analysis of rock slopes and circular tunnels.

On the Study of System Reliability Analysis of Tension Leg Platforms (TLP 해양구조물의 시스템 신뢰성 해석에 관한 연구)

  • Joo-Sung,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.2
    • /
    • pp.55-62
    • /
    • 1990
  • In this paper, another method for system reliability analysis, called the extended incremental load method, is introduced. The method is an extension of the conventional incremental load method and has been developed aiming at evaluating the probability of system failure(or system reliability) of continuous structures such as floating offshore structures under the multiple loading condition, more realistically considering the post-ultimate behaviour of failed components and directly using the strength formulae of principle components in a structure with employing the modified safety margin equation proposed herein in the system analysis. The method has been applied to the Hutton TLP operated in the Hutton field in the North Sea and a certain variant of the design using the TLP Rule Case Committee type improved strength models. System failure probability and corresponding system reliability indices are derived for a more economical and efficient design. The redundancy characteristics are also addressed. The TLP forms are shown to possess high reserve strength and system safety.

  • PDF

Investigation of ratio of TBM disc spacing to penetration depth in rocks with different tensile strengths using PFC2D

  • Sarfarazi, Vahab;Haeri, Hadi;Shemirani, Alireza Bagher;Hedayat, Ahmadreza;Hosseini, Seyed Shahin
    • Computers and Concrete
    • /
    • v.20 no.4
    • /
    • pp.429-437
    • /
    • 2017
  • In this study, the effect of the tensile strength and ratio of disc spacing to penetration depth on the efficiency of tunnel boring machine (TBM) is investigated using Particle flow code (PFC) in two dimensions. Models with dimensions of $150{\times}70mm$ made of rocks with four different tensile strength values of 5 MPa, 10 MPa, 15 MPa and 20 MPa were separately analyzed and two "U" shape cutters with width of 10 mm were penetrated into the rock model by velocity rate of 0.1 mm/s. The spacing between cutters was also varied in this study. Failure patterns for 5 different penetration depths of 3 mm, 4 mm, 5 mm, 6 mm, and 7 mm were registered. Totally 100 indentation test were performed to study the optimal tool-rock interaction. An equation relating mechanical rock properties with geometric characteristics for the optimal TBM performance is proposed. The results of numerical simulations show that the effective rock-cutting condition corresponding to the minimum specific energy can be estimated by an optimized disc spacing to penetration depth, which, in fact, is found to be proportional to the rock's tensile strength.