• Title/Summary/Keyword: epoxysilane

Search Result 9, Processing Time 0.022 seconds

Comparison of the Tribological behaviors of Various Organic Molecular Films (다양한 유기분자막의 마찰특성 비교)

  • ;;;V. Tsukruk
    • Tribology and Lubricants
    • /
    • v.17 no.5
    • /
    • pp.386-390
    • /
    • 2001
  • Monolayers such as self-assembled monolayer (SAM) have received considerable attention to reduce stiction and friction in micro-devices and microelectromechanical systems (MEMS). Various organic molecular films were investigated to obtain better understanding of their tribological behaviors and adhesion property. The organic molecular films studied in this work are: epoxysilane SAMs, octadecyltricholosilane (OST), multi-layers composed of epoxysilane SAMs, poly[styrene-b-(ethylene-co-butylene)-b-styrene](SEBS) and compound of epoxy resin and poly (paraphenylene)(EP/PPP). The pull-off forces of these films were also obtained from force-distance curves measured in static mode of operation of atomic force microscope(AFM). Tribological tests were conducted with a ball-on-flat reciprocating friction tester. The OST showed the lowest pull-off force, indicating its low adhesion property. It was revealed that, the OST, EP/PPP and the multi-layer of epoxysilane SAMs, SEBS and EP/PPP exhibited good tribological properties at the lower load (0.3 N) whereas the OST showed best performance at the higher load (1.8 N).

Comparison of the tribological behaviors of various organic molecular films (다양한 유기분자막의 마찰특성 비교)

  • ;;;V. Tsukruk
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.49-54
    • /
    • 2001
  • Monolayers such as self-assembled monolayer (SAM) have received considerable attention to reduce stiction and friction in micro-devices and microelectromechanical systems (MEMS). Various organic molecular films were investigated to obtain better understanding of their tribological behaviors and adhesion property. The organic molecular films studied in this work are: epoxysilane SAMs, octadecyltricholosilane (OST), multi-layers composed of epoxysilane SAMs, poly〔styrene-b-(ethylene-co-butylene)-b-styrene〕(SEBS) and compound of epoxy resin and poly (paraphenylene) (EP/PPP). The pull-off forces of these films were also obtained from force-distance curves measured in static mode of operation of atomic force microscope (AFM). Tribological tests were conducted with a ball-on-flat reciprocating friction tester. The OST showed the lowest pull-off force, indicating its low adhesion property. It was revealed that, the OST, EP/PPP and the multi-layer of epoxysilane SAMs, SEBS and EP/PPP exhibited good tribological properties at the lower load (0.3 N) whereas the OST showed best performance at the higher load (1.8 N).

  • PDF

Effect of the Types of Silane Coupling Agents on the Properties of the Hydrophilic Coating Films (실란커플링제 종류가 친수성 코팅 필름의 물성에 미치는 영향)

  • Lee, Byoung-Hwa;Kim, Eun-Ki;Lee, Sul;Lim, Hyung-Jun;Lee, In-Pyo
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.163-170
    • /
    • 2016
  • In order to improve the hydrophilic property of polymer films, coating solutions which showed a good hydrophilic property, were prepared by the sol-gel method. The coating solutions were prepared by adding different types of silane coupling agents (aminosilane, epoxysilane and acrylsilane) to a colloidal silica (15 nm diameter). The solutions prepared by adding aminosilane resulted in gels which could not be used as coating solutions. On the other hand, the coating solutions prepared by the addition of epoxysilane showed contact angles of $10{\sim}15^{\circ}$ and good hydrophilic property at R=0.10~0.15 (R=silane coupling agent/colloidal silica weight ratio). In addition, the coating solutions prepared by the addition of acrylsilane at R=0.03~0.07, exhibited contact angles of $5{\sim}10^{\circ}$, which means better hydrophilic property than aminosilane or epoxysilane.

Properties of Sol-Gel Materials Synthesized from Colloidal Silica and Alkoxysilane Containing Epoxysilane (에폭시 실란을 함유한 콜로이드 실리카와 알콕시 실란간의 졸겔코팅제 합성과 특성)

  • Kang, Dong-Pil;Park, Hoy-Yul;Ahn, Myeong-Sang;Myung, In-Hye;Choi, Jae-Hoon;Kim, Hyun-Joong
    • Applied Chemistry for Engineering
    • /
    • v.16 no.6
    • /
    • pp.822-826
    • /
    • 2005
  • Colloidal Silica (CS)/methyltrimethoxysilane (MTMS) and CS/MTMS/epoxysilane (ES) sol solutions were prepared using various synthesizing parameters such as reaction time and types of CS and silane. In order to understand their physical and chemical properties, sol-gel coating films on glass were fabricated. In the case of the CS/MTMS sol, the coating films had high contact angle and more enhanced flat surface than the CS/MTMS/ES sol. In the case of thermal stability, thermal degradation of the CS/MTMS and CS/MTMS/ES coating films did not occur up to $550^{\circ}C$ and $440^{\circ}C$, respectively. The coating films prepared from the CS/MTMS sol were thicker than those of the CS/MTMS/ES sol. In addition, the coating films prepared from single CS were thicker than those of mixed CS. Hardness of the coating films prepared from CS/MTMS increased by adding ES. In case of the mixed CS, the hardness decreased by adding ES.

A Study on the Fabrication and Electrical Characteristics of Polyimide Nanocomposite as an Insulator between Turns of Superconducting Transformer (초전도 변압기용 turn간 절연재료용 Polyimide Nanocomposite의 제조 및 전기적 특성 연구)

  • 박영욱;이동성;김상현
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.105-108
    • /
    • 2002
  • Polyimide-epoxysilane (coupling agent) composites were reacted with oligomeric PDMS, a condensation product of difunctional silane, by a sol-gel process and were then dried into films. And then, the surface, mechanical, and electric properties were measured. The study showed that PDMS existed in the polyimlde matrix by the use of FT-IR. In the mechanical properties, the maximum elongation and toughness was increased in the polyimide with silane-groups. But the maximum tensile strength was slightly decreased. And the intensive dispersion of the silane-groups on the surface of polyimide was ascertained through XPS measurement. In the electric properties, AC break down voltage was increased by increasing the amount of difunctional silane. This experiment showed that PDMS added polyimide had better mechanical and electric properties than classical materials.

  • PDF

Development and Characteristics of a New Insulator between Turns of Superconducting Coil (초전도 Coil의 새로운 turn간 절연재료의 개발 및 특성)

  • 박영욱;이동성;이정원;곽동순;김상현
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.1
    • /
    • pp.26-29
    • /
    • 2002
  • Polyimide-epoxysilane (coupling agent) composites were reacted with oligomeric PDMS, a condensation product of difunctional silane, by a sol-gel process and were then dried into films. And then, the surface, mechanical, and electric properties were measured. The study showed that PDMS existed in the polymide matrix by the use of FT-IR. In the mechanical properties, the maximum elongation and toughness was increased in the polyimide with silane-groups. But the maximum tensile strength was slightly decreased. And the intensive dispersion of the silane-groups on the surface of polyimide was ascertained through XPS measurement. In the electric properties. AC break down voltage was increased by increasing the amount of difunctional silane. This experiment showed that PDMS added polyimide had better mechanical and electric properties than classical materials.

Preparation and Physical Properties of Acrylic Resin Coatings Containing Tertiary Amine and Epoxysilane Curing Agent (3급아민기 함유 아크릴수지 합성과 에폭시실란 경화형 도료의 도막 물성)

  • Kim, Seong-Kil;Park, Hyong-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.164-165
    • /
    • 2021
  • To prepare the good-adherent and weather-resistant acrylic resin coatings, acrylic resin was prepared by a radical polymerization. Glass transition temperature(Tg) of the acrylic copolymer was fixed at 30℃ and the contents of tertiary amine monomer(DMAEMA) was varied to be 5, 10, 15, 20 wt% respectively. γ-Glycidoxypropyltrimethoxysilane(GPTMS) containing epoxy group was used for curing agents and di-n-butyltindilaurate(DBTDL) was used for drying accelerator. The equivalent ratio of amine to epoxy was 1:1. The prepared coatings exhibited excellent adhesion to various substrates, and various physical properties of the coatings were satisfactory. The gloss retention and color difference were improved at low tertiary amine concentration. The coatings containing 10wt% tertiary amine concentration have especially good weather resistant properties.

  • PDF

Cure Kinetics of Cycloaliphatic Epoxy/Silica System for Electrical Insulation Materials in Outdoor Applications

  • Lee, Jae-Young;Park, Jae-Jun;Kim, Jae-Seol;Shin, Seong-Sik;Yoon, Chan-Young;Cheong, Jong-Hoon;Kim, Young-Woo;Kang, Geun-Bae
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.2
    • /
    • pp.74-77
    • /
    • 2015
  • The cure kinetics of a neat epoxy system and epoxy/silica composite were investigated by DSC analysis. A cycloaliphatic type epoxy resin was diglycidyl 1,2-cyclohexanedicarboxylate and curing agent was anhydride type. To estimate kinetic parameters, the Kissinger equation was used. The activation energy of the neat epoxy system was 88.9 kJ/mol and pre-exponential factor was 2.64×1012 min−1, while the activation energy and pre-exponential factor for epoxy/silica composite were 97.4 kJ/mol and 9.21×1012 min−1, respectively. These values showed that the silica particles have effects on the cure kinetics of the neat epoxy matrix.

Modification of glass fiber bundle with functionalized coupling agents and phenolic resin (기능성 커플링제와 페놀수지에 의한 유리섬유 다발의 표면개질 연구)

  • Lee, Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.168-175
    • /
    • 2016
  • The surface of glass fiber bundle was modified with functionalized silanes and phenolic resin to improve the tensile strength as well as the adhesion of glass fiber to matrix phenolic resin. The surface modification of reinforcing glass fiber can play a significant role in controlling whole composite characteristics. We applied surface modification of glass fiber with two different functionalized silanes, such as glycidyltrimethoxysilane(G-silane) and aminopropyltriethoxysilane (A-silane), and phenol formaldehyde(PF) resin in one pot or separated process under different coating compositions and temperatures. Thermal treatment temperature is very important factor to improve the mechanical properties of modified glass fiber. Modified glass fiber bundle treated at $170^{\circ}C$ showed the highest tensile strength of $10.05g_f/D$. Surface analyses by scanning electron microscope(SEM) and FT-IR spectroscopy were used to characterize the surface coatings on glass fiber bundles. Mechanical property changes as functions of treatment conditions and coupling agent types were also explained.