• 제목/요약/키워드: epoxy

검색결과 3,689건 처리시간 0.026초

The Effect of $Bi(OH)_3$ on Corrosion-Resistant Properties of Automotive Epoxy Primers

  • Yang, Wonseog;Min, Sungki;Hwang, Woon-suk
    • Corrosion Science and Technology
    • /
    • 제7권6호
    • /
    • pp.370-374
    • /
    • 2008
  • In this study, we evaluated anti-corrosion properties of both commercial unleaded and lead epoxy primer for automotive substrate before applying to actual painting lines by salt spray test, and cyclic corrosion test, potentiodynamic test and electrochemical impedance spectroscopy. The difference in the corrosion resistance between automotive epoxy primers contained $Bi(OH)_{3}$ and leaded one was investigated. And it was also discussed the effect of zinc phosphate pretreatment to the epoxy primers. The specimen coated epoxy primer contained $Bi(OH)_{3}$ showed 0.5 V higher corrosion potential than that of bare steel. The result of salt spray test did not indicate remarkable difference of corrosion resistance in all specimens above $10{\mu}m$ thickness up to 1200 hours. In the cyclic corrosion test, epoxy primers contained $Bi(OH)_{3}$ on phosphated substrate performed good corrosion properties until 800 hours. The epoxy primer contained $Bi(OH)_{3}$ performed the equivalent corrosion resistance as leaded coating on phosphated steel, but slightly inferior to that of leaded on bare steel. These results show that the pre-treatment of zinc phosphate is effective as well as pigment changing in performing anti-corrosion properties in automotive bodies.

Phytogenic silver nanoparticles (Alstonia scholaris) incorporated with epoxy coating on PVC materials and their biofilm degradation studies

  • Supraja, Nookala;Tollamadugu, Naga Venkata Krishna Vara Prasad;Adam, S.
    • Advances in nano research
    • /
    • 제4권4호
    • /
    • pp.281-294
    • /
    • 2016
  • The advantages of nano-scale materials (size 1-99 nm in at least in one dimension) could be realized with their potential applications in diversified avenues. Herein, we report for the first time on the successful synthesis of homogeneous epoxy coatings containing phytogenic silver nanoparticles (Ag) on PVC and glass substrates by room-temperature curing of fully mixed epoxy slurry diluted by acetone. Alstonia scholaris bark extract was used to reduce and stabilize the silver ions. The surface morphology and mechanical properties of these coatings were characterized using the techniques like, UV-Vis (UV-Visible) spectrophotometry, X-ray diffraction (XRD), Fourier transform infrared spectrophotometry (FT-IR), Epifluorescence microscopy and scanning electron microscopy (SEM). The effect of incorporating Ag nanoparticles on the biofilm (scale) resistant epoxy-coated PVC was investigated by total viable counts ($CFU/cm^2$) from epoxy coating from (Initial) $1^{st}$ day to $25^{th}$ days. The phytogenic Ag nanoparticles were found to be significantly improving the microstructure of the coating matrix and thus enhanced the anti-biofilm performance of the epoxy coating. In addition, the antimicrobial mechanism of Ag nanoparticles played an important role in improving the anti-biofilm performance of these epoxy coatings.

유리섬유강화 에폭시 레진 복합체의 기계적, 유전체 특성에 미치는 첨가제 함유 에폭시 영향 (Effect of Additive-added Epoxy on Mechanical and Dielectric Characteristics of Glass Fiber Reinforced Epoxy Composites)

  • ;;;최형진
    • 폴리머
    • /
    • 제38권6호
    • /
    • pp.726-734
    • /
    • 2014
  • Three different types of additives, thiokol, epoxidized natural rubber (ENR) and epoxidized linseed oil (ELO), were dispersed in an epoxy matrix before being used in glass fiber (GF) composites, and their effects on the mechanical and dielectric properties of epoxy resin and glass fiber reinforced epoxy composites (GF/EP) were examined. The addition of each of 7 phr ENR, 9 phr ELO and 5 phr thiokol into the epoxy resin increased the fracture toughness significantly by 56.9, 43.1, and 80.0%, respectively, compared to the unmodified resin. The mode I interlaminar fracture toughness of the GF/EP at propagation was also improved by 26.9, 18.3 and 32.7% when each of 7 phr ENR, 9 phr ELO, and 5 phr thiokol, respectively, was dispersed in the epoxy matrix. Scanning electron microscopy showed that the additives reduced crack growth in the GF/EP, whereas their dielectric measurements showed that all these additives had no additional effect on the real permittivity and loss factor of the GF/EP.

전하전이착체형 잠재성 촉매를 사용한 반도체 성형용 자소성 에폭시 수지 시스템의 경화 반응속도 연구 (Cure Kinetics of Self-Extinguishing Epoxy Resin Systems with Charge Transfer Complex Type Latent Catalyst for Semiconductor Encapsulation)

  • 김환건
    • 반도체디스플레이기술학회지
    • /
    • 제13권4호
    • /
    • pp.27-32
    • /
    • 2014
  • The cure properties of self-extinguishing epoxy resin systems with different charge transfer type latent catalysts were investigated, which are composed of YX4000H as a biphenyl epoxy resin, MEH-7800SS as a hardener, and charge transfer type latent catalysts. We designed and used five kinds of charge transfer type latent catalyst and compared to epoxy resin systems with Triphenylphosphine-Benzoquinone(TPP-BQ) as reference system. The cure kinetics of these systems were analyzed by differential scanning calorimetry with an isothermal approach, the kinetic parameters of all systems were reported in generalized kinetic equations with diffusion effects. The epoxy resin systems with Triphenylphosphine-Quinhydrone(TPP-QH), Triphenylphosphine-Benzanthrone(TPP-BT) and Triphenylphosphine-Anthrone(TPP-AT) as a charge transfer type latent catalyst showed a cure conversion rate of equal or higher rate than those with TPP-BQ. These systems with TPP-QH and Triphenylphosphine-Tetracyanoethylene(TPP-TCE) showed a critical cure reaction conversion of equal or higher conversion than those with TPP-BQ. The increases of cure conversion rates could be explained by the decrease of the activation energy of these epoxy resin systems. It can be considered that the increases of critical cure reaction conversion would be dependent on the crystallinity of the biphenyl epoxy resin systems.

탄성에폭시 블렌드 시스템의 열적 특성 및 내충격성에 관한 연구 (Study on the Thermal Properties and High Impact of Elastic Epoxy Blend System)

  • 이경용;이관우;민지영;최용성;박대희
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제53권4호
    • /
    • pp.192-199
    • /
    • 2004
  • Elastic-factor of elastic epoxy were investigated by TMA (Thermomechanical Analysis), DMTA (Dynamic Mechanical Thermal Analysis), TGA (Thermogravimetric Analysis) and FESEM (Field Emission Scanning Electron Microscope) for structure-images analysis as toughness-investigation to improve brittleness of existing epoxy resin. A range of measurement temperature of the TMA and DMTA was changed from -20($^{\circ}C$) to $200^{\circ}(C)$, and TGA was changed from $0^{\circ}(C)$ to $600^{\circ}(C)$. Glass transition temperature (Tg) of elastic epoxy was measured through thermal analysis devices with the content of 0(phr), 20(phr) and 35(phr). Also, thermal expansion coefficient (a), high temperature, modulus and loss factor were investigated through TMA, TGA, and DMTA. In addition, the structure of specimens was analyzed through FESEM, and then elastic-factor of elastic epoxy was visually showed by FESEM. As thermal analysis results, 20(phr) was more excellent than 30(phr) thermally and mechanically. Specially, thermal expansion coefficient, high temperature, modulus, and damping properties were excellent. By structure-images analysis through FESEM, we found elastic-factor of elastic epoxy that is not existing epoxy, and proved high impact.

에폭시 수지를 이용한 아스팔트 혼합물의 강상판 적용성 평가 (Field Application of Epoxy Asphalt Mixture for Steel Bridge Deck)

  • 김낙석
    • 한국재난정보학회 논문집
    • /
    • 제9권2호
    • /
    • pp.206-213
    • /
    • 2013
  • 본 연구에서는 현재 일본에서 개발되어 적용되고 있는 고형화 에폭시 수지를 이용한 아스팔트 혼합물의 국내 강상판 적용성을 평가 하고자 하였다. 다양한 문헌조사를 통한 고형화 에폭시 아스팔트 혼합물의 특성을 파악한 후, 배합설계 와 혼합물 평가를 실시하였다. 그 결과 강상판에 적용되는 다른 재래식 혼합물에 비하여 성능이 월등함을 알 수 있었다. 또한, 3D 유한 요소 해석을 수행한 결과 에폭시 아스팔트가 시공 시 충분한 공용성능을 보이는 것으로 판단되어 국내에서 일반적으로 사용되고 있는 배치식 플랜트 통해 고형화 에폭시 아스팔트 혼합물 생산 후 시험시공을 실시하였다. 시공 후 공용성을 평가하기 위해 BPT 실험을 한 결과 포장의 표면은 기준이상의 마찰력을 나타내는 것을 알 수 있었다.

에폭시 아크릴레이트의 전자선 영향 평가 (Characterization of Electron Beam Cured Epoxy Acrylate)

  • 신진욱;오병환;고금진;전준표;강필현
    • 방사선산업학회지
    • /
    • 제4권3호
    • /
    • pp.271-276
    • /
    • 2010
  • Epoxy resin has wide application in various industrial fields because of their good mechanical strength, superiority adhesion and low shrinkage etc. And the typical curing method for epoxy resins is thermal and press compaction. However, a curing method was used electron beam process in this study. Epoxy acrylate was fabricated from mixture of epoxy, acrylic acid, tetraphenylporphyrin (TPP) and hydroquinone monomethyl ether (MEHQ) with mole ratios. Then electron beam irradiation effect on the curing of the epoxy acrylate resin was investigated various absorption dose in nitrogen atmospheres at room temperature. The dynamic mechanical and thermal properties of the irradiated epoxy acrylate resins were characterized using dynamic mechanical analysis (DMA) and thermogravimetric analyzer (TGA). And the tensile and flexural strength were measured by an universal tensile machine (UTM).

DGEBA에 대한 폴리트리아졸술폰의 강인화 효과 연구 (Effect of Polytriazolesulfone Addition on Fracture Toughness of DGEBA Epoxy Resin)

  • 권웅;이민규;한민우;정의경
    • 한국염색가공학회지
    • /
    • 제31권2호
    • /
    • pp.118-126
    • /
    • 2019
  • This study aims to investigate the effect of polytriazolesulfone(PTS) addition on fracture toughness of diglycidyl ether of bisphenol A(DGEBA) and 4,4'-diaminodiphenylsulfone(DDS). Various amounts of PTS were added to DGEBA/4,4'-DDS in diazide and dialkyne monomer forms and polymerized during the epoxy curing process. Fracture toughness(K1C), tensile properties and thermal stability of the PTS added epoxy resin were evaluated and compared with those of PES, the conventional high Tg toughening agent, added epoxy resin. Fracture toughness of the PTS added epoxy resin was dramatically improved up to 133%, as the amount of PTS added increased, whereas that of the PES added epoxy resin was improved by only 67%. The tensile strength of PTS added DGEBA/4,4'-DDS was similar to the epoxy resin without PTS and tensile modulus was improved by 20%. And thermal stability of the PTS added epoxy resin was improved up to 14%. Therefore, PTS addition to DGEBA/4,4'-DDS, as a toughening agent, is very effective way to improve its fracture toughness without any lowering in other properties.

Ballistic impact response of Kevlar Composites with filled epoxy matrix

  • Pekbey, Yeliz;Aslantas, Kubilay;Yumak, Nihal
    • Steel and Composite Structures
    • /
    • 제24권2호
    • /
    • pp.191-200
    • /
    • 2017
  • Impact resistance and weight are important features for ballistic materials. Kevlar fibres are the most widely reinforcement for military and civil systems due to its excellent impact resistance and high strength-to-weight ratio. Kevlar fibres or spectra fiber composites are used for designing personal body armour to avoid perforation. In this study, the ballistic impact behaviour of Kevlar/filled epoxy matrix is investigated. Three different fillers, nanoclay, nanocalcite and nanocarbon, were used in order to increase the ballistic impact performance of Kevlar-epoxy composite at lower weight. The filler, nanoclay and nanocalcite, content employed was 1 wt.% and 2 of the epoxy resin-hardener mixture while the nanocarbon were dispersed into the epoxy system in a 0.5%, 1% and 2% ratio in weight relating to the epoxy matrix. Specimens were produced by a hand lay-up process. The results obtained from ballistic impact experiments were discussed in terms of damage and perforation. The experimental tests revealed a number of damage mechanisms for composite laminated plates. In the ballistic impact test, it was observed whether the target was perforated completely penetrated at the back or not. The presence of small amounts of nanoclay and nanocalcite dispersed into the epoxy system improved the impact properties of the Kevlar/epoxy composites. The laminates manufactured with epoxy resin filled by 1 wt.% of nanoclay and 2 wt% nanocalcite showed the best performance in terms of ballistic performance. The addition of nanocarbon reduced ballistic performance of Kevlar-epoxy composites when compared the results obtained for laminates with 0% nanoparticles concentration.

광·열경화형 수지를 이용한 탄소섬유 프리프레그의 물리적 특성 (Mechanical Characteristics of CF Laminated Prepreg with UV-thermal Dual Curable Epoxy Resin)

  • 심지현;김지혜;박성민;구광회;장기욱;배진석
    • 한국염색가공학회지
    • /
    • 제29권1호
    • /
    • pp.37-44
    • /
    • 2017
  • An issue of major concern in the utilization of laminated composites based epoxy resin is associated with the occurrence of delaminations or interlaminar cracks, which may be related to manufacturing defects or are induced in service by low-velocity impacts. A strong interfacial filament/brittle epoxy resin bonding can, however, be combined with the high fracture toughness of weak interfacial bonding, when the filaments are arranged to have alternate sections of shear stress. To improve this drawback of the epoxy resin, UV-thermal dual curable resin were developed. This paper presents UV-thermal dual curable resin which were prepared using epoxy acrylate oligomer, photoinitiators, a thermal-curing agent and thermoset epoxy resin. The UV curing behaviors and characteristics of UV-thermal dual curable epoxy resin were investigated using Photo-DSC, DMA and FTIR-ATR spectroscopy. The mechanical properties of UV-thermal dual curable epoxy resin impregnated CF prepreg by UV curable resin content were measured with Tensile, Flextural, ILSS and Sharpy impact test. The obtained results showed that UV curable resin content improves the epoxy toughness.