• Title/Summary/Keyword: epitaxial graphene

Search Result 32, Processing Time 0.032 seconds

The Influence of Hydrogen Intercalation on the Nanomechanical Properties of Epitaxial Graphene on SiC Substrates

  • Kwon, Sangku;Ko, Jae-Hyeon;Yang, G.E.;Kim, Won-Dong;Kim, Yong-Hyun;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.129.1-129.1
    • /
    • 2013
  • Atomically-thin graphene is the ideal model system for studying nanoscale friction due to its intrinsic two-dimensional anisotropy. Here, we report the reduced nanoscale friction of epitaxial graphene on SiC, investigated with conductive-probe atomic force microscopy/friction force microscopy in ultra-high vacuum. The measured friction on a buffer layer was found to be 1/8 of that on a monolayer of epitaxial graphene. Conductive probe atomic force microscopy revealed a lower conductance on the buffer layer, compared to monolayer graphene. We associate this difference in friction with the difference in total lateral stiffness. Because bending stiffness is associated with flexural phonons in two-dimensional systems, nanoscale frictional energy should primarily dissipate through damping with the softest phonons. We investigated the influence of hydrogen intercalation on the nanoscale friction. We found that the friction decreased significantly after hydrogen intercalation, which is related to loose contact between the graphene and the substrate that results in a lower bending stiffness.

  • PDF

Angle-Resolved Photoemission Spectroscopy and Raman Spectroscopy Study on the Quasi-free Standing Epitaxial Graphene on the 4H SiC(0001) surface

  • Yang, Gwang-Eun;Park, Jun;Park, Byeong-Gyu;Kim, Hyeong-Do;Jo, Eun-Jin;Hwang, Chan-Yong;Kim, Won-Dong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.277-277
    • /
    • 2013
  • The epitaxial graphene on the 4H- or 6H-SiC(0001) surface has been intensively studied due to the possibility of wafer-scale growt. However the existence of interface layer (zero layer graphene) and its influence on the upper graphene layer have been considered as one of the main obstarcles for the industrial application. Among various methods tried to overcome the strong interaction with the substrate through the interface layer, it has been proved that the hydrogen intercalation successfully passivate the Si dangling bond of the substrate and can produce the quasi-free standing epitaxial graphene (QFEG) layers on the siC(0001) surface. In this study, we report the results of the angle-resolved photoemission spectroscopy (ARPES) and Raman spectroscopy for the QFEG layers produced by ex-situ and in-situ hydrogen intercalation.From the ARPES measurement, we confirmed that the Dirac points of QFEG layers exactly coincide with the Fermi level. The band structure of QFEG layer are sustainable upon thermal heating up to 1100 K and robust against the deposition of several metals andmolecular deposition. We also investigated the strain of the QFEG layers by using Raman spectroscopy measurement. From the change of the 2D peak position of graphene Raman spectrum, we found out that unlike the strong compressive strain in the normal epitaxial graphene on the SiC(0001) surface, the strain of the QFEG layer are significantly released and almost similar to that of the mechanically exfoliated graphene on the silicon oxide substrate. These results indicated that various ideas proposed for the ideal free-standing graphene can be tested based on the QFEG graphene layers grown on the SiC(0001) surface.

  • PDF

Atomic-scale investigation of Epitaxial Graphene Grown on 6H-SiC(0001) Using Scanning Tunneling Microscopy and Spectroscopy

  • Lee, Han-Gil;Choe, Jeong-Heon;Kim, Se-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.125-125
    • /
    • 2012
  • Graphene was epitaxially grown on a 6H-SiC(0001) substrate by thermal decomposition of SiC under ultrahigh vacuum conditions. Using scanning tunneling microscopy (STM), we monitored the evolution of the graphene growth as a function of the temperature. We found that the evaporation of Si occurred dominantly from the corner of the step rather than on the terrace. A carbon-rich $(6{\sqrt{3}}{\times}6{\sqrt{3}})R30^{\circ}$ layer, monolayer graphene, and bilayer graphene were identified by measuring the roughness, step height, and atomic structures. Defect structures such as nanotubes and scattering defects on the monolayer graphene are also discussed. Furthermore, we confirmed that the Dirac points (ED) of the monolayer and bilayer graphene were clearly resolved by scanning tunneling spectroscopy (STS).

  • PDF

p-Type Doping of Epitaxial Graphene by p-tert-Butylcalix[4]arene

  • Park, Sun-Min;Yang, Se-Na;Kim, Ki-Jeong;No, Kwang-Hyun;Lee, Hang-Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2809-2812
    • /
    • 2010
  • The Chemical Doping of epitaxial graphene (EG) due to p-tert-butylcalix[4]arene was investigated using high resolution photoemission spectroscopy (HRPES). The measured work function changes verified that increased adsorption of the p-tert-butylcalix[4]arene on EG showed p-type doping characteristics due to charge transfer from the graphene to the p-tert-butylcalix[4]arene through the hydroxyl group. A single oxygen bonding feature associated with the O 1s peak was clearly observed in the core-level spectra, indicating the presence of one equivalent adsorption state.

Geometrical and Electronic Structure of Epitaxial Graphene on SiC(0001) : A Scanning Tunneling Microscopy Study

  • Ha, Jeong-Hoon;Yang, Hee-Jun;Baek, Hong-Woo;Chae, Jung-Seok;Hwang, Beom-Yong;Kuk, Y.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.368-368
    • /
    • 2010
  • Monolayers of graphite can be grown by fine controlled surface graphitization on the surfaces of various metallic and semiconducting materials. Epitaxial graphene grown on polished silicon carbide crystal surfaces has drawn much attention due to well known vacuum annealing procedures from surface analysis methods, especially scanning tunneling microscopy(STM) and scanning tunneling spectroscopy(STS). In this study, we have grown single layer and few layer graphene on silicon terminated 6H-SiC(0001) crystals. The growth of graphene layers were observed by low energy electron diffraction(LEED) patterns. Scanning tunneling microscopy and spectroscopy measurements were performed to illustrate the electronic structure which may display some clue on the influence of the underlying structure. Spatially resolved STS results acquired at the edges of epitaxial graphene show in detail the electron density of states, which is compared to theoretical calculations. STM measurements were also done on graphene films grown by chemical vapor deposition(CVD) and transferred onto a SiC(0001) crystal. These observations may provide a hint for the understanding of carrier scattering at the edges.

  • PDF

Thermoelectric Imaging of Epitaxial Graphene

  • Jo, Sang-Hui
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.113.2-113.2
    • /
    • 2014
  • Heat is a familiar form of energy transported from a hot side to a colder side of an object, but not a notion associated with microscopic measurements of electronic properties. A temperature difference within a material causes charge carriers, electrons or holes, to diffuse along the temperature gradient inducing a thermoelectric voltage. Here we show that local thermoelectric measurements can yield high sensitivity imaging of structural disorder on the atomic and nanometre scales. Using this imaging technique, we discovered a defect-mediated dimensional evolution of strain-response patterns in epitaxial graphene with increasing thickness.

  • PDF

Chemical Doping of Graphene by Altretamine(2,4,6-Tris [dimethylamino]-1,3,5-Triazine)

  • Park, Sun-Min;Yang, Se-Na;Lim, Hee-Seon;Lee, Han-Gil
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2199-2202
    • /
    • 2011
  • The electronic properties of altretamine(2,4,6-tris [dimethylamino]-1,3,5-triazine) adsorbed on epitaxial graphene (EG) were investigated by core-level photoemission spectroscopy (CLPES) in conjunction with low energy electron diffraction (LEED). We found that altretamine molecule adsorbed onto interface layer (S1) of graphene as we confirm decrement of S1 peak using CLPES and haziness of LEED pattern. Moreover, the measured work function changes verified that increased adsorption of the altretamine on graphene layer showed n-type doping characteristics due to charge transfer from altretamine to graphene through the nitrogens. Two distinct nitrogen bonding feature associated with the N 1s peak was clearly observed in the core-level spectra indicating two different chemical environments.

Self-Assembly of Pentacene Molecules on Epitaxial Graphene

  • Jung, Woo-Sung;Lee, Jun-Hae;Ahn, Sung-Joon;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.230-230
    • /
    • 2012
  • Graphene have showed promising performance as electrodes of organic devices such as organic transistors, light-emitting diodes, and photovoltaic solar cells. In particular, among various organic materials of graphene-based organic devices, pentacene has been regarded as one of the promising organic material because of its high mobility, chemical stability. In the bottom-contact device configuration generally used as graphene based pentacene devices, the morphology of the organic semiconductors at the interface between a channel and electrode is crucial to efficient charge transport from the electrode to the channel. For the high quality morphology, understanding of initial stages of pentacene growth is essential. In this study, we investigate self-assembly of pentacene molecules on graphene formed on a 6H-SiC (0001) substrate by scanning tunneling microscopy. At sub-monolayer coverage, adsorption of pentacene molecules on epitaxial graphene is affected by $6{\times}6$ pattern originates from the underlying buffer layer. And the orientation of pentacene in the ordered structure is aligned with the zigzag direction of the edge structure of single layer graphene. As coverage increased, intermolecular interactions become stronger than molecule-substrate interaction. As a result, herringbone structures the consequence of higher intermolecular interaction are observed.

  • PDF

Epitaxial Growth of Graphene by Surface Segregation and Chemical Vapor Deposition on Ru(0001) Studied with Scanning Tunneling Microscopy (주사형 탐침 현미경을 이용한 Ru(0001) 위 그래핀의 에피탁시얼 성장 조건에 대한 연구)

  • Jang, Won-Jun;Kahng, Se-Jong
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.6
    • /
    • pp.285-290
    • /
    • 2013
  • Epitaxial graphene on metal substrates provides excellent platforms to study its atomic and electronic structures, and can be grown either by surface segregation of carbon or by chemical vapor deposition. The growth behaviors of the two methods, however, have not been directly compared each other. Here, we studied domain structures of graphene grown by three different methods, surface segregation, post-annealing with adsorbed ethylene, and high-temperature dose of ethylene, using scanning tunneling microscopy. The first two methods resulted in graphene regions with areas of $100nm^2$, whereas the third method showed large area graphene (> $10^4nm^2$) with regular hexagonal Moire patterns, implying that high-temperature dose of ethylene is preferable for further studies on graphene such as additional growth of organic molecules.

Graphene formation on 3C-SiC ultrathin film on Si substrates

  • Miyamoto, Yu;Handa, Hiroyuki;Fukidome, Hirokazu;Suemitsu, Maki
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.9-10
    • /
    • 2010
  • Since the discovery of graphene by mechanical exfoliation from graphite[1], various fabrication methods are available today such as chemical exfoliation, epitaxial graphene on SiC substrates, etc. In view of industrialization, the mechanical exfoliation method may not be an option. Epitaxial graphene on SiC substrates, in this respect, is by far more practical because the method consists of conventional thermal treatments familiar to semiconductor industry. Still, the use of the SiC substrate itself, and hence the incompatibility with the Si technology, lessens the importance of this technology in its future industrialization. In this context, we have tackled the problem of forming graphene on Si substrates (GOS). Our strategy is to form an ultrathin (~80 nm) SiC layer on top of a Si substrate, and to graphitize the top SiC layers by a vacuum annealing. We have actually succeeded in forming the GOS structure [2,3,4]. Raman-scattering microscopy indicates presence of few-layer graphene (FLG) formed on our annealed SiC/Si heterostructure, with the G ($1580\;cm^{-1}$) and the G'($2700\;cm^{-1}$) bands, both related to ideal graphene, clearly observed. Presence of the D ($1350\;cm^{-1}$) band indicates presence of defects in our GOS films, whose elimination remains as a challenge in the future. To obtain qualified graphene films on Si substrate, formation of qualified SiC films is crucial in the first place, and is achieved by tuning the growth parameters into a process window[5]. With a potential for forming graphene films on large-scale Si wafers, GOS is a powerful candidate as a key technology in bringing graphene into silicon technology.

  • PDF