Browse > Article
http://dx.doi.org/10.5757/JKVS.2013.22.6.285

Epitaxial Growth of Graphene by Surface Segregation and Chemical Vapor Deposition on Ru(0001) Studied with Scanning Tunneling Microscopy  

Jang, Won-Jun (Department of Physics, Korea University)
Kahng, Se-Jong (Department of Physics, Korea University)
Publication Information
Journal of the Korean Vacuum Society / v.22, no.6, 2013 , pp. 285-290 More about this Journal
Abstract
Epitaxial graphene on metal substrates provides excellent platforms to study its atomic and electronic structures, and can be grown either by surface segregation of carbon or by chemical vapor deposition. The growth behaviors of the two methods, however, have not been directly compared each other. Here, we studied domain structures of graphene grown by three different methods, surface segregation, post-annealing with adsorbed ethylene, and high-temperature dose of ethylene, using scanning tunneling microscopy. The first two methods resulted in graphene regions with areas of $100nm^2$, whereas the third method showed large area graphene (> $10^4nm^2$) with regular hexagonal Moire patterns, implying that high-temperature dose of ethylene is preferable for further studies on graphene such as additional growth of organic molecules.
Keywords
Graphene; Ru(0001); STM; Epitaxial growth;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. Pan, H. Zhang, D. Shi, J. Sun, S. Du, F. Liu, and H. J. Gao, Adv. Mater. 21, 2777 (2009).   DOI   ScienceOn
2 B. Borca, S. Barja, M. Garnica, M. Minniti, A. Politano, J. M. Rodriguez-Garcia, J. J. Hinarejos, D. Farias, A. L. V. de Parga, and R. Miranda, New J. Phys. 12, 093018 (2010).   DOI   ScienceOn
3 D. Martoccia, M. Bjorck, C. M. Schleputz, T. Brugger, S. A. Pauli, B. D. Patterson, T. Greber, and P. R. Willmott, New J. Phys. 12, 043028 (2010).   DOI   ScienceOn
4 P. Sutter and E. Sutter, Adv. Mater. 23, 2617 (2013).
5 J. C. Shelton, H. R. Patil, and J. M. Blakely, Surf. Sci. 43, 493 (1974).   DOI   ScienceOn
6 C. H. Chung, W. J. Jung, and I. W. Lyo, Phys. Rev. Lett. 97, 116102 (2006).   DOI   ScienceOn
7 F. Craes, S. Runte, J. Klinkhammer, M. Kralj, T. Michely, and C. Buss, Phys. Rev. Lett. 111, 056804 (2013).   DOI
8 J. Tersoff and D. R. Hamann, Phys. Rev. Lett. 50, 1998 (1983).   DOI
9 Y. C. Chen, D. G. de Oteyza, Z. Pedramrazi, C. Chen, F. R. Fischer, and M. F. Crommie, ACS Nano 7, 6123 (2013).   DOI   ScienceOn
10 A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).   DOI
11 S. H. Ji, J. B. Hannon, R. M. Tromp, V. Perebeinos, J. Tersoff, and F. M. Ross, Nat. Mater. 11, 114 (2012).
12 A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).   DOI   ScienceOn
13 S. Marchini, S. Gunther, and J. Wintterlin, Phys. Rev. B 76, 075429 (2007).   DOI   ScienceOn
14 P. W. Sutter, J. I. Flege, and E. A. Sutter, Nat. Mater 7, 406 (2008).   DOI   ScienceOn
15 J. Wintterlin and M. L. Bocquet, Surf. Sci. 603, 1841 (2009).   DOI   ScienceOn