• 제목/요약/키워드: epistatic QTLs

검색결과 12건 처리시간 0.019초

Development and Evaluation of QTL-NILs for Grain Weight from an Interspecific Cross in Rice

  • Yun, Yeo-Tae;Kim, Dong-Min;Park, In-Kyu;Chung, Chong-Tae;Seong, Yeaul-Kyu;Ahn, Sang-Nag
    • 한국육종학회지
    • /
    • 제42권4호
    • /
    • pp.357-364
    • /
    • 2010
  • In a previous study, we mapped 12 QTLs for 1,000 grain weight (TGW) in the 172 $BC_2F_2$ lines derived from a cross between Oryza sativa ssp. Japonica cv. Hwaseongbyeo and O. rufipogon. These QTLs explained 5.4 - 11.4% of the phenotypic variance for TGW. Marker-aided selection combined with backcrosses was employed to develop QTL-NILs for each QTL. $BC_2F_2$ lines with each target QTL were backcrossed to Hwaseongbyeo twice and then allowed to self to produce $BC_4F_5$ populations. SSR markers linked to TGW were employed to select QTL-NILs with the respective target QTL. Six QTL-NILs with the recurrent parent, Hwaseongbyeo were evaluated for nine traits for three years from 2007 and 2009. Differences were observed between each of the 6 QTL-NILs and Hwaseongbyeo in TGW. In addition to TGW, these QTL-NILs displayed differences in other agronomic traits possibly indicating a tight linkage of genes controlling these traits. The direction of the QTL for TGW in 6 QTL-NILs was consistent as in the $BC_2F_2$ lines from the same cross. Difference in TGW between each of the QTL-NILs and Hwaseongbyeo was associated with the difference in one or two grain shape traits; grain length, grain width, and grain thickness. SSR markers linked to the QTL for TGW will facilitate selection of the grain shape character in a breeding program to diversify grain shape and provide the foundation for map-based gene isolation. Also, the QTL-NILs developed in this report and the progenies from crosses between the QTL-NILs will be useful in clarifying epistatic interactions among QTLs for TGW.

작물 육종에서 분자유전자 지도의 이용 (Genome Mapping Technology And Its Application In Plant Breeding)

  • 은무영
    • 한국식물학회:학술대회논문집
    • /
    • 한국식물학회 1995년도 제9회 식물생명공학 심포지움 식물육종과 분자생물학의 만남 The 9th Plant Biotechnology Symposium -Breeding and Molecular Biology-
    • /
    • pp.57-86
    • /
    • 1995
  • Molecular mapping of plant genomes has progressed rapidly since Bostein et al.(1980) introduced the idea of constructing linkage maps of human genome based on restriction fragment length polymorphism (RFLP) markers. In recent years, the development of protein and DNA markers has stimulated interest for the new approaches to plant improvement. While classical maps based on morphological mutant markers have provided important insights into the plant genetics and cytology, the molecular maps based on molecular markers have a number of inherent advatages over classical genetic maps for the applications in genetic studies and/or breeding schemes. Isozymes and DNA markers are numerous, discrete, non-deleterious, codominant, and almost entirely free of environmental and epistatic interactions. For these reasons, they are widely used in constructing detailed linkage maps in a number of plant species. Plant breeders improve crops by selecting plants with desirable phenotypes. However a plant's phenotyes is often under genetic control, positioning at different "quantitative trait loci" (QTLs) together with environmental effects. Molecular maps provide a possible way to determine the effect of the individual gene that combines to produce a quantitative trait because the segregation of a large number of markers can be followed in a single genetic cross. Using market-assisted selection, plants that contain several favorable genes for the trait and do not contain unfavourable segments can be obtained during early breeding processes. Providing molecular maps are available, valuable data relevant to the taxonomic relationships and chromosome evolution can be accumulated by comparative mapping and also the structural relationships between linkage map and physical map can be identified by cDNA sequencing. After constructing high density maps, it will be possible to clone genes, whose products are unknown, such as semidwarf and disease resistance genes. However, much attention has to be paid to level-up the basic knowledge of genetics, physiology, biochemistry, plant pathology, entomology, microbiology, and so on. It must also be kept in mind that scientists in various fields will have to make another take off by intensive cooperation together for early integration and utilization of these newly emerging high-techs in practical breeding. breeding.

  • PDF