• Title/Summary/Keyword: epipolar line

Search Result 46, Processing Time 0.026 seconds

IKONOS Stereo Matching with Land Cover Map for DEM Generation

  • Lee, Hyo-Seong;Ahn, Ki-Weon;Park, Byung-Guk;Han, Dong-Yeob
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.580-583
    • /
    • 2007
  • Various matching methods have been introduced by investigators to improve digital elevation model (DEM) accuracy of satellite imagery. This study proposed an area-based matching method according to land cover property using correlation coefficient of pixel brightness value between the two images for DEM generation from IKONOS stereo imagery. For this, matching line (where "matching line" implies straight line that is approximated to complex nonlinear epipolar geometry) is established by exterior orientation parameters to minimize search area. The matching is carried out based on this line. Land cover classes are divided off into water, urban land, forest and agricultural land. Matching size is selected using a correlation-coefficient image in the four areas. The selected sizes are $81{\times}81$ pixels window, $21{\times}21$ pixels window, $119{\times}119$ pixels window and $51{\times}51$ pixels window in the water area, urban land, forest land and agricultural land, respectively. And hence, DEM is generated from IKONOS stereo imagery using the selected matching sizes and land cover map on the four types.

  • PDF

3D SCENE EDITING BY RAY-SPACE PROCESSING

  • Lv, Lei;Yendo, Tomohiro;Tanimoto, Masayuki;Fujii, Toshiaki
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.732-736
    • /
    • 2009
  • In this paper we focus on EPI (Epipolar-Plane Image), the horizontal cross section of Ray-Space, and we propose a novel method that chooses objects we want and edits scenes by using multi-view images. On the EPI acquired by camera arrays uniformly distributed along a line, all the objects are represented as straight lines, and the slope of straight lines are decided by the distance between objects and camera plane. Detecting a straight line of a specific slope and removing it mean that an object in a specific depth has been detected and removed. So we propose a scheme to make a layer of a specific slope compete with other layers instead of extracting layers sequentially from front to back. This enables an effective removal of obstacles, object manipulation and a clearer 3D scene with what we want to see will be made.

  • PDF

Building Roof Reconstruction in Remote Sensing Image using Line Segment Extraction and Grouping (선소의 추출과 그룹화를 이용한 원격탐사영상에서 건물 지붕의 복원)

  • 예철수;전승헌;이호영;이쾌희
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.2
    • /
    • pp.159-169
    • /
    • 2003
  • This paper presents a method for automatic 3-d building reconstruction using high resolution aerial imagery. First, by using edge preserving filtering, noise is eliminated and then images are segmented by watershed algorithm, which preserves location of edge pixels. To extract line segments between control points from boundary of each region, we calculate curvature of each pixel on the boundary and then find the control points. Line segment linking is performed according to direction and length of line segments and the location of line segments is adjusted using gradient magnitudes of all pixels of the line segment. Coplanar grouping and pplygonal patch formation are performed per region by selecting 3-d line segments that are matched using epipolar geometry and flight information. The algorithm has been applied to high resolution aerial images and the results show accurate 3D building reconstruction.

Omnidirectional Camera Motion Estimation Using Projected Contours (사영 컨투어를 이용한 전방향 카메라의 움직임 추정 방법)

  • Hwang, Yong-Ho;Lee, Jae-Man;Hong, Hyun-Ki
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.5
    • /
    • pp.35-44
    • /
    • 2007
  • Since the omnidirectional camera system with a very large field of view could take many information about environment scene from few images, various researches for calibration and 3D reconstruction using omnidirectional image have been presented actively. Most of line segments of man-made objects we projected to the contours by using the omnidirectional camera model. Therefore, the corresponding contours among images sequences would be useful for computing the camera transformations including rotation and translation. This paper presents a novel two step minimization method to estimate the extrinsic parameters of the camera from the corresponding contours. In the first step, coarse camera parameters are estimated by minimizing an angular error function between epipolar planes and back-projected vectors from each corresponding point. Then we can compute the final parameters minimizing a distance error of the projected contours and the actual contours. Simulation results on the synthetic and real images demonstrated that our algorithm can achieve precise contour matching and camera motion estimation.

Precise Rectification of Misaligned Stereo Images for 3D Image Generation (입체영상 제작을 위한 비정렬 스테레오 영상의 정밀편위수정)

  • Kim, Jae-In;Kim, Tae-Jung
    • Journal of Broadcast Engineering
    • /
    • v.17 no.2
    • /
    • pp.411-421
    • /
    • 2012
  • The stagnant growth in 3D market due to 3D movie contents shortage is encouraging development of techniques for production cost reduction. Elimination of vertical disparity generated during image acquisition requires heaviest time and effort in the whole stereoscopic film-making process. This matter is directly related to competitiveness in the market and is being dealt with as a very important task. The removal of vertical disparity, i.e. image rectification has been treated for a long time in the photogrammetry field. While computer vision methods are focused on fast processing and automation, photogrammetry methods on accuracy and precision. However, photogrammetric approaches have not been tried for the 3D film-making. In this paper, proposed is a photogrammetry-based rectification algorithm that enable to eliminate the vertical disparity precisely by reconstruction of geometric relationship at the time of shooting. Evaluation of proposed algorithm was carried out by comparing the performance with two existing computer vision algorithms. The epipolar constraint satisfaction, epipolar line accuracy and vertical disparity of result images were tested. As a result, the proposed algorithm showed excellent performance than the other algorithms in term of accuracy and precision, and also revealed robustness about position error of tie-points.

Novel View Generation Using Affine Coordinates

  • Sengupta, Kuntal;Ohya, Jun
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1997.06a
    • /
    • pp.125-130
    • /
    • 1997
  • In this paper we present an algorithm to generate new views of a scene, starting with images from weakly calibrated cameras. Errors in 3D scene reconstruction usually gets reflected in the quality of the new scene generated, so we seek a direct method for reprojection. In this paper, we use the knowledge of dense point matches and their affine coordinate values to estimate the corresponding affine coordinate values in the new scene. We borrow ideas from the object recognition literature, and extend them significantly to solve the problem of reprojection. Unlike the epipolar line intersection algorithms for reprojection which requires at least eight matched points across three images, we need only five matched points. The theory of reprojection is used with hardware based rendering to achieve fast rendering. We demonstrate our results of novel view generation from stereopairs for arbitrary locations of the virtual camera.

  • PDF

An efficient alignment method of the Stereoscopic camera for three dimensional image acquisition (입체 영상 획득용 Stereoscopic Camera의 효율적 정렬 방법)

  • 김재한
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.575-578
    • /
    • 2001
  • 원격 조작이나 해저 수중 탐사에서 실제와 같이 거리감을 인식하며 제어하기 위하여, 3차원 입체 영상 카메라 장치를 사용하고 있다. 기본적인 구성 형태인 Stereoscopic Camera 시스템은 기구적으로 주시각 제어와 초점 제어가 이루어 지고 있으며, 획득영상에 대하여 영상 distortion 보정, 압축 처리 등의 영상 신호처리가 행하여진다. 양안 카메라의 수평 위치를 일치시켜 수평적으로 동일 위치의 pixel들이 정확한 epipolar line을 형성할 경우에, 주시각 제어가 용이하고 보정 및 영상처리 등의 연산량이 대폭 감소된다. 이와 같은 calibration 과정을, 기존의 시스템에서는, 주로 영상 획득 포기에 패턴을 사용하여 실시하거나, 물리적 수평 장치와 sensor 등의 보조 장치를 이용하여 calibration을 행한다. 그러나, 기계적으로 정밀하게 정렬을 한다고 하여도 두 카메라의 광축 및 CCD조립상 상이점과 특성의 불일치로 인하여 실제 획득된 영상에서는 변이와 회전이 포함된 영상을 얻게된다. 본 논문에서는 Stereoscopic Camera의 위와같은 정렬 오류의 문제점을 분석한 후, 제안 방식으로서 두 카메라의 획득되는 영상을 직접 영상 처리하여 수직 방향 및 회전 오류를 최소화 시켜 정렬하는 새로운 방법을 제시하며, 실험적으로 제안 방식의 효율성을 보인다.

  • PDF

A Study on Determination of the Matching Size of IKONOS Stereo Imagery (IKONOS 스테레오 영상의 매칭사이즈 결정연구)

  • Lee, Hyo-Seong;Ahn, Ki-Weon;Lee, Chang-No;Seo, Doo-Cheon
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.201-205
    • /
    • 2007
  • In the post-Cold War era, acquisition technique of high-resolution satellite imagery (HRSI) has begun to commercialize. IKONOS-2 satellite imaging data is supplied for the first time in the 21st century. Many researchers testified mapping possibility of the HRSI data instead of aerial photography. It is easy to renew and automate a topographical map because HRSI not only can be more taken widely and periodically than aerial photography, but also can be directly supplied as digital image. In this study matching size of IKONOS Geo-level stereo image is presented lot production of digital elevation model (DEM). We applied area based matching method using correlation coefficient of pixel brightness value between the two images. After matching line (where "matching line" implies straight line that is approximated to complex non-linear epipolar geometry) is established by exterior orientation parameters (EOPs) to minimize search area, the matching is tarried out based on this line. The experiment on matching size is performed according to land cover property, which is divided off into four areas (water, urban land, forest land and agricultural land). In each of the test areas, window size for the highest correlation coefficient is selected as propel size for matching. As the results of experiment, the proper size was selected as $123{\times}123$ pixels window, $13{\times}13$ pixels window, $129{\times}129$ pixels window and $81{\times}81$ pixels window in the water area, urban land, forest land and agricultural land, respectively. Of course, determination of the matching size by the correlation coefficient may be not absolute appraisal method. Optimum matching size using the geometric accuracy therefore, will be presented by the further work.

  • PDF

Matching Size Determination According to Land Cover Property of IKONOS Stereo Imagery (IKONOS 입체영상의 토지피복 특성에 따른 정합영역 크기 결정)

  • Lee, Hyo-Seong;Park, Byung-Uk;Lee, Byung-Gil;Ahn, Ki-Weon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.6_2
    • /
    • pp.587-597
    • /
    • 2007
  • This study determines matching size for digital elevation model (DEM) production according to land cover property from IKONOS Geo-level stereo image. We applied area based matching method using correlation coefficient of pixel brightness value between the two images. After matching line (where "matching line" implies straight line that is approximated to complex non-linear epipolar geometry) is established by exterior orientation parameters to minimize search area, the matching is carried out based on this line. The experiment is performed according to land cover property, which is divided off into four areas (water, urban land, forest land and agricultural land). In each of the test areas, matching size is selected using a correlation-coefficient image and parallax image. As the results, optimum matching size of the images was selected as $81{\times}81$ pixels window, $21{\times}21$ pixels window, $119{\times}119$ pixels window and $51{\times}51$ pixels window in the water area, urban land, forest land and agricultural land, respectively.

Generation of Feature Map for Improving Localization of Mobile Robot based on Stereo Camera (스테레오 카메라 기반 모바일 로봇의 위치 추정 향상을 위한 특징맵 생성)

  • Kim, Eun-Kyeong;Kim, Sung-Shin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.1
    • /
    • pp.58-63
    • /
    • 2020
  • This paper proposes the method for improving the localization accuracy of the mobile robot based on the stereo camera. To restore the position information from stereo images obtained by the stereo camera, the corresponding point which corresponds to one pixel on the left image should be found on the right image. For this, there is the general method to search for corresponding point by calculating the similarity of pixel with pixels on the epipolar line. However, there are some disadvantages because all pixels on the epipolar line should be calculated and the similarity is calculated by only pixel value like RGB color space. To make up for this weak point, this paper implements the method to search for the corresponding point simply by calculating the gap of x-coordinate when the feature points, which are extracted by feature extraction and matched by feature matching method, are a pair and located on the same y-coordinate on the left/right image. In addition, the proposed method tries to preserve the number of feature points as much as possible by finding the corresponding points through the conventional algorithm in case of unmatched features. Because the number of the feature points has effect on the accuracy of the localization. The position of the mobile robot is compensated based on 3-D coordinates of the features which are restored by the feature points and corresponding points. As experimental results, by the proposed method, the number of the feature points are increased for compensating the position and the position of the mobile robot can be compensated more than only feature extraction.