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Abstract: In this paper we present an algorithm to generate
new views of a scene, starting with images from weakly calibrated
cameras. Errors in 3D scene reconstruction usually gets reflected
in the quality of the new scene generated, so we seek a direct
method for reprojection. In this paper, we use the knowledge of
dense point matches and their affine coordinate values to estimate
the corresponding affine coordinate values in the new scene. We
borrow ideas from the object recognition literature, and extend
them significantly to solve the problem of reprojection. Unlike
the epipolar line intersection algorithms for reprojection which re-
quires at least eight matched points across three images, we need
only five matched points. The theory of reprojection is used with
hardware based rendering to achieve fast rendering. We demon-
strate our results of novel view generation from stereopairs for

arbitrary locations of the virtual camera.

I. Introduction

Recently, communication between humans located at
distant sites has increased in importance. However, ex-
isting visual communication means such as video con-
ferencing systems have limitations. For a user, the feel-
ing of situated at distant locations is often difficult to
overcome. One solution is to create an environment in
which humans can feel that they are co-located in one
real space. To realize this, it is necessary to generate
views from arbitrary points in the real space.

In this paper, we refer to the images from the real,
“weakly” calibrated cameras as real images(for exam-
ple, stereo pairs) , and those from the virtual camera
as novel/virtual images. By weak calibration, we mean
that we know the epipolar geometry of the stereo pair.
For novel view generation, to start with, we assume
that we have already solved the problem of dense point
match correspondence among the real images. In this
paper, we show how these matched points can be repro-
jected into a novel image.

There are approaches in the literature which solves
the problem of scene reprojection either by extracting
the 3D structure of the scene either using the strong

camera calibration parameters, or by assuming that
the objects undergo 3D affine or projective transforma-
tion {4, 5. This is followed by the projection of the 3D
points into the new image. As mentioned by Shashua
in (1], 3D reconstruction is unstable under errors in im-
age measurements, and a variety of other factors. Di-
rect approaches for scene reprojection and novel view
synthesis, such as epipolar line intersection, either re-
quire strong calibration of the cameras, or at least eight
matched points in three views [6].

Most recently, Seitz and Dyer [3] have shown that
given two images, the set of all views on the line join-
ing the two optical centers can be generated by morph-
ing. The view morphing idea therefore does not ex-
tend for arbitrarily placed virtual cameras. In that
sense, Shashua’s [1] reprojection algorithm using trilin-
ear forms of three perspective views seem to be the most
technically correct approach. However, we are not very
sure about its time performance. Our approach is sim-
ilar to [1] in the sense that it is neither based on 3D
reconstruction, nor on epipolar line intersection. The
affine coordinate based scene reprojection theory pre-
sented in this paper is much simpler, and is based on
the work reported in [2]. Here, the author shows that
the set of 2D images produced by a group of 3D point
features of a rigid model can be optimally represented
by two lines in a high dimensional a — 3 (affine) space.
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The assumption of the of orthogonal projection does not
produce encouraging results, so we replace it with a pin
hole camera projection model. We study the proper-
ties of the affine coordinates of matched points for this
model. and use them for novel view generation.

The paper is organized as follows. In Section II
we discuss the affine coordinate based reprojection ap-
proach, and show how the theory can be used for novel
view synthesis. We present the experimental results in
Section II1, followed by a section on conclusions.

II. Scene Reprojection and Novel View
Generation

In this section, we sequentially develop the idea of
affine coordinate based reprojection over two different
SCenarios:

1. Planar Case: Here, all points in the scene belong
to a plane in 3D. The perspective transform is ap-
proximated as an affine transform.

2. Pin Hole Case: Points lie anywhere, and we use
the pin hole geometry of the cameras to project the
points into a plane followed by an affine transform
of these (projected) points as in the planar case.

A. Planar Case

Here, we use the theory of affine invariance originally
proposed by Lamdan and Wolfson {7} for object recogni-
tion applications. Let {m,ps2,...,pn} be the projection
of a set of points, all belonging to a 3D plane. Choosing
(p1,p2,p3) as the basis as shown in Fig. 1, the affine co-
ordinates (a;, 3;) of the ith point is invariant to affine
transforms, where

i = ptra(pz—p)+06i(ps—p)

Approximating the transformation under perspective
projection as an affine transform, we can say that the

affine coordinates of any point on the plane are invariant
over all possible sets of novel images.

Scene reprojection and novel view generation is quite
simple when we assume that all points in the world be-
fong to a plane. We need only one scene to reproduce
any other scene. We choose an affine basis and a good
engineering solution would be to show the real camera

a structure like the one in Fig. 1{b)'. Here, P, P, is at
right angles to PPy, and PPy = P, P;. Without loss
of generality, let Pi. P» and Ps project to points p;.
p2 and ps, respectively, in the real image. Also, given
the 3 x 4 calibration matrix of the virtual camera. we
project Pi, P and P into points (in its image plane)
Py, p5 and p§, respectively. For this, we assume that
the world coordinates of Pi, P, and P; are (0, 0, 0),
(1, 0, 0), and{0, 1, 0), respectively. For a point p
in the novel image, we compute its affine coordinates
(af, BY) with respect to the basis (p?, p},p}). The cor-
responding point in the real image is p,, where:

pi = pr+of(p2-p)+ 8 (ps - ;) (1
Thé point p! in the virtual image assumes the same
greyscale/color values as the point p;.

B.  Pin Hole Case

Here, we assume a regular pin hole camera geometry
to project the points in 3D into a plane. This is followed
by an affine transform of these (projected) points. Let
(Pi, P2, Ps,...,P,) be the set of 3D points not neces-
sarily lying on a plane. We construct a hypothetical
plane passing through points P, P, and P; as shown
in Fig. 2. We call it the basis plane. Also, for the point
P, we drop a perpendicular on the basis plane and con-
struct point pj, whose affine coordinates are (aq, by) for
the basis (P, P2, P3). We similarly construct the point
P}

For affine coordinates (ay, 84), it can be shown that
there is a viewpoint in which the projection of the point
Py has those affine coordinates. Let py, be a point on
the basis plane with affine coordinates (ay, 8;), for the
basis (£, P, P3}). The line passing through py, and Py
sets the line on which the camera center C can lie on,
which we pick arbitrarily. We also choose the viewing
direction arbitrarily. The line Pypy, meets the image
plane at a point g4. That is, ¢4 is the image of Py. In
a similar manner, we project Py, By, P3 into ¢, g2 and
g3, respectively, on this image plane. With (g1, ¢2,¢3)
as the basis, we observe that g4 has the affine coordi-
nates (a4, 34), with the affine transform approximation
of perspective transform.

Let g; be the projection of P; on the basis plane.
As before, both py, and ¢; has the affine coordinates
(@i, Bi) when the basis are (P, P2, P3) and (g;,¢2,43),

! Any three non collinear point in space will do the job, we simply
make its geometry as simple as possible.
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respectively. Also, let ¢’ and de be the projection of the
camera center C and its distance from the image plane.

Using similar triangles C'pg, ¢’ and Pipy, pl, we have:

di !
= (pp, — ¢) (2)

ph — D = i

Using similar triangles Cpp, ¢

. _ (i,;
pbq p4 - dc

atd Dypy,py, we have.
(pss —€') (3)
Thus, from Eqns. (2) and (3), we have:
Po =P _ (ﬁ) (m; - C’)
Py — Pj dy) \po, — ¢
In terms of the affine coordinates, the above equation
is written as:
(_Eij_) ( (aivfgi) - (aCJbC) )
ds /) \ (a4, B4) — (G, be)

(i, 8i) — (@i, bi)
In terms of the o coordinates only, we simplify it to:

{4, Ba) — (a4, b4)

(4)

where

= (222 (@ -a (5)

Although a,, a4, d; and d4 are constant over all pos-
sible images that can be generated, a, is dependent on
the camera parameters. However, if we know a. and a4
a-priori, then we can easily compute o for a given im-
age. Thus, for every possible image the plot of (e, a;)
is a straight line with a slope of EL' This property is
illustrated in Fig. 3. The line in the 3 space has the
same slope as the line in the o space.

Also, note that the slopes of the line corresponding
to the ith point is directly proportional to the distance
of the point from the basis plane.

Unlike the planar case, we need to know the loca-
tion of a 3D point in two or more images (for example,
stereo pairs) to project it into a new image. Let the two
given images be I; and I,. For novel view generation,
we assume the knowledge of dense point correspondence
between these two images. For a point p! in image I, let
the corresponding point in I be p?. We need four refer-
ence points (three points to create the basis and a fourth

point) to generate the lines in a and 3 space. Without,
loss of generality, let the reference points be p?, 73, pi, p
in the image I; {j = 1,2.). To make things simpler, we
choose these points as the images of the points Py, P,
Py and Py. P, P; and P; are shown in Fig. 1{b) and the
line P Fy is perpendicular to the plane containing P;,
Pg and Pg. AISO, !P1P4i = JP1P2| = ‘P]P‘;I = inP;;i =
1. We show this structure (simultaneously) to the two
cameras before the experiment, and record the coordi-
nate values of their projections p},pl, o2, 0} (7 = 1,2).
Now, for points p} and p] in image I}, let its affine coor-
dinates be (o, 3]) and (a?, 37), respectively. The line
in the (2 dimensional) a space discussed earlier passes
through the points (al’,a!) and (af’,a?).

Note that for the jth image, to compute af;’ using
Eqgn. (5), we need to know af and a4. For the chosen
geometry of Py, ..., Py, a4 is zero.. To compute al, we
need a fifth control point (say Fs). For our convenience,
we choose Py such that it is collinear with Py and Fy.
Let |PsPy| = k|PyPs|, where |PsFs| denotes the Eu-
clidean distance between points P; and P, and so on.
Let P; project to the point pJ in the jth camera. Let
its affine coordinates be (ozr 5’ ). Since a5 = 0, using
Eqns. (4) and (5}, we have:

o = o (1~ k) (6)

(1-43})

Without loss of generality (for generating the virtual
image)}, we assume that the coordinate values of Py, P,
Py, Py, and P; are (000), (100), (010), (00 1),
and(0 O k), respectively. These points are projected to
the novel image using the 3 x 4 perspective transfor-
mation matrix of the virtual camera. Let these points
be (p},...,pf). Reprojecting the ith point p} is accom-
plished by computing the affine coordinates {a?,8Y),
with (p},p%,p3) as the basis. Let a; = Kooy + ; be
the equation of the line in the @ space for the ith point.
Using Eqns. (4) and (5), we have

P (7

where o and af are the « component of the affine co-
ordinates of pj and the projection of the virtual camera
center. We compute 57 similarly. All points in [; are
reprojected to the virtual image using this technique.

Note that two or more points in I| can map to a
point in the virtual image. To resolve this, we can use
the slope of the line information to decide which point
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to choose. A point with a larger slope value is further
away from the basis plane, and hence closer to the vir-
tual image, assuming that the virtual camera is looking
into the basis plane. Also, there is the issue of filling
up the gaps in the novel image, since our process does
not guarantee that every point in it will be mapped to
by a point in I;. We address both these problems using
standard ideas in computer graphics, like polygoniza-
tion. We essentially divide I) into squares, each with
sides of one pixel length as shown in Fig. 4. For the
point p! shown in the figure, the z and y coordinates
are the = and y coordinates of p!, respectively. The 2
coordinate value is the negative of the slope of the line
in the affine space, and the texture value is identical
to that of p; in I;. This process is repeated for the re-
maining three points in the square, and for all squares in
the grid. Next, we use the graphics hardware to render
this polyhedra under an orthographic projection with-
out any translation, rotation or scaling. This retains
the x and y coordinates of the vertices in the polyhe-
dra. This process of rendering should not be confused
with the 3D reconstruction of the scene and rendering,
because the polyhedral representation of I; is not the
3D structure of the scene. It is completely derived from
the reprojected coordinate values.

I11.  Experimental Results

To verify the theory of scene reprojection using affine
coordinates, we experimented on three real images of a
scene simply taken by moving the IndyCam mounted on
an SGI workstation. The images are shown in Fig. 5.
Although in our previous discussions, the third image
has always been the virtual image, it is not difficult to
see that the theory works when the third one is a real
image, provided we have five matched points (which are
essentially projections of Py,...,Ps) over the images.
From the checkered block, we chose five matched points
over the three images, marked by 'x’. We also hand
picked seven match points between the first two images
as shown by black dots in Fig. 5(a) and (b). Fig.5(c)
illustrates how these matched points project into the
third image while we use the pin hole model of the
camera. We observed that our theory of reprojection
provides a marked improvement over the reprojection
results under Jacob’s camera model in [2].

The images shown in Fig. 6(a) are two images from a
multiple baseline sterec configuration. The images were
already rectified, so we implemented a straight forward

correlation based stereo matching algorithm [8] to gen-
erate the disparity map and the dense point match in-
formation. The five reference points in the two images
are shown as dots. We use the theory in Sec. {I.B. to
generate new views of the scene, as shown in Fig. 6(b).
At present, the novel view generation algorithm runs
almost real time on an SGI Onyx workstation. We have
compared our results with the standard 3D reconstruc-
tion and rendering based novel view generation. With
the exception of a scale factor, the results from these
two approaches are not significantly different.

IV. Conclusions

In this paper, we present an algorithm for scene re-
projection and novel view generation using properties of
affine coordinates in sets of images that can be produced
by a collection of 3D points. This method requires only
five matched points across three images, of which two
are real images and the third one is the novel image. We
believe that our theory can be extended to other appli-
cations such as generating epipolar lines, view stitching
and merging real and virtual objects. Note that the
computations (Eq. (7)) for scene reprojection is quite
simple. Also using the graphics hardware leads to al-
most real time performance of the novel view generation
process on still scenes. For dynamic scenes, the biggest
bottleneck is in obtaining dense point matches at frame
rate. With standard stereo matching algorithms avail-
able in the literature, this can only be accomplished by
designing a special purpose hardware.
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Figure 1: (a) The points on the 3D plane, and the ba-
sis (p1,p2,p3). {b) The 3D reference points (P, Py, P}
which project to form the basis (py, s, p3)-

View

Basis Plane

Figure 2: Projection of points into an image plane when
the pin hole camera model is used for projection into a
plane followed by an affine transform.
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Figure 3: The plot of (), a;} over all possible images
leads to a straight line, as shown here.
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Figure 4: The construction of the grid for the polygo-
nization process in generating novel views.

Image Plane
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(a) (b) (c)

Figure 5: Results of the reprojection algorithm. The three images are shown in (a), (b) and {c). The
'x’ represents the reference points. The dots in (a) and (b) represent the points to be reprojected. The
dots in (c) represent the location of the reprojected points using our theory.

(b)

Figure 6: (a) The stereo pairs used for the experiment of novel view generation. (b} The novel views
generated.

— 130 —



