• Title/Summary/Keyword: epipolar

Search Result 125, Processing Time 0.025 seconds

Matching Size Determination According to Land Cover Property of IKONOS Stereo Imagery (IKONOS 입체영상의 토지피복 특성에 따른 정합영역 크기 결정)

  • Lee, Hyo-Seong;Park, Byung-Uk;Lee, Byung-Gil;Ahn, Ki-Weon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.6_2
    • /
    • pp.587-597
    • /
    • 2007
  • This study determines matching size for digital elevation model (DEM) production according to land cover property from IKONOS Geo-level stereo image. We applied area based matching method using correlation coefficient of pixel brightness value between the two images. After matching line (where "matching line" implies straight line that is approximated to complex non-linear epipolar geometry) is established by exterior orientation parameters to minimize search area, the matching is carried out based on this line. The experiment is performed according to land cover property, which is divided off into four areas (water, urban land, forest land and agricultural land). In each of the test areas, matching size is selected using a correlation-coefficient image and parallax image. As the results, optimum matching size of the images was selected as $81{\times}81$ pixels window, $21{\times}21$ pixels window, $119{\times}119$ pixels window and $51{\times}51$ pixels window in the water area, urban land, forest land and agricultural land, respectively.

A Real-Time Hardware Architecture for Image Rectification Using Floating Point Processing (부동 소수점 연산을 이용한 실시간 영상 편위교정 FPGA 하드웨어 구조 설계)

  • Han, Dongil;Choi, Jeahoon;Shin, Ho Chul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.2
    • /
    • pp.102-113
    • /
    • 2014
  • This paper suggests a novel hardware architecture of a real-time rectification which is to remove vertical parallax of an image occurred in the pre-processing stage of stereo matching. As an off-line step, Matlab Toolbox which was designed by J.Y Bouguet, was used to calculate calibration parameter of the image. Then, based on the Heikkila and Silven's algorithm, rectification hardware was designed. At this point, to enhance the precision of the rectified image, floating-point unit was generated by using Xilinx Core Generator. And, we confirmed that proposed hardware design had higher precision compared to other designs while having the ability to do rectification in real-time.

Extracting Topographic Information from SPOT-5 HRG Stereo Images (SPOT-5 HRG 스테레오 영상으로부터 지형정보 추출)

  • Lee, Jin-Duk;Lee, Seong-Sun;Jeong, Tae-Sik
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.4 s.38
    • /
    • pp.61-70
    • /
    • 2006
  • This paper presents photogrammetric processing to generate digital elevation models using SPOT-5 HRG stereo images and deals with the accuracy potential of HRG (High Resolution Geometry) supermode imagery for DEM generation. After bundle adjustment was preformed for sensor modelling, digital surface models were generated through the procedures of Epipolar image resampling and image matching. The DEM extracted from HRG imagery was compared along several test sections with the the refernce DEM which was obtained from the digital topographic maps of a scale of 1 to 5000. The ratio of the zone with DEM errors less than 5m to the whole zone was 53.8%, and about 2.5m RMSE was showed when assuming that the zones larger than 5m were affected by clouds, water bodies and buildings and excluding those zones from accuracy evaluation. In addition, the three-dimensional bird's eye view model and 3D building model were producted based on the DSM which was extracted from SPOT-5 HRG data.

  • PDF

Robust Estimation of Fundamental Matrix Using Inlier Distribution (일치점 분포를 이용한 기본행렬 추정)

  • 서정각;조청운;홍현기
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.5
    • /
    • pp.357-364
    • /
    • 2003
  • The main difficulty in estimating the fundamental matrix stems from the unavoidable outliers inherent in the given correspondence matches. Several researches showed that the estimation results are much dependent on selecting the corresponding points. These represent that it is important to solve the problems due to errors on the point locations and mismatches. In this paper, our analysis shows that if the evenly distributed corresponding points are selected, we can estimate a more precise fundamental matrix. This paper presents novel approaches to estimate the fundamental matrix by considering the inlier distributions. In order to select evenly distributed points, we divide the entire image into the subregions, and then examine the number of the inliers in each subregion and the area of each region. The simulation results showed that our consideration of the inlier distribution can provide a more precise estimation of the fundamental matrix.

Development of the Advanced SURF Algorithm for Efficient Matching of Stereo Image (스테레오 영상의 효율적 매칭을 위한 개선된 SURF 알고리즘 개발)

  • Youm, Min Kyo;Yoon, Hong Sik;Whang, Jin Sang;Lee, Dong Ha
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.2
    • /
    • pp.11-17
    • /
    • 2013
  • Nowadays 3D models are used in diverse sectors. The 3D maps provide better reality than existing plane maps as well as diverse pieces of information that cannot be expected from the limited plane maps. A process proposed in this paper enables easy and quick production by replacing the expensive laser scanners for modeling by an improved digital camera stereo matching algorithm. The algorithm used in this study was a SURF algorithm contained in the OpenCV library. The unconformity points of the algorithm were eliminated using the homography conversion and epipolar lines. In addition, the improved algorithm was compared with the commercial program, and it showed a better performance than the commercial program. It is expected that the proposed method can contribute to the digital maps and 3D virtual reality because it enables easy and quick 3D modeling provided that the stereo matching conditions are met.

DEM Generation of Tidal Flat by the Area Based Matching Method Using Digital Aerial Stereo Images (디지털 입체 항공사진의 영역기반매칭법에 의한 갯벌 DEM 제작)

  • Lee, Hyo-Seong;Ahn, Ki-Weon;Kim, Duk-Jin
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.3
    • /
    • pp.42-52
    • /
    • 2010
  • The purpose of this study is to produce digital elevation model (DEM) in the Jebu tidal flat, one of the west coast of the Korean Peninsula, by means of photogrammetric techniques from aerial digital stereo-images. Produced DEM would be become the fundamental data for change detection of the sediment and erosion. To do so, epipolar line is established by relative orientation. Area-based matching is then carried out based on this line and matching size according to surface property of tidal flat after a classified image is produced from reflectance and texture of the surface. As the results, DEM generated by the proposed method showed subtle changes in height more precisely than DEM using the fixed matching size and DEM by the commercial S/W in the region, such as tidal flats having few level differences.

TIN based Matching using Stereo Airphoto and Airborne LiDAR (입체항공사진과 항공 LiDAR를 이용한 TIN 기반 정합)

  • Kim, Hyung-Tae;Han, Dong-Yeob
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.4
    • /
    • pp.443-452
    • /
    • 2008
  • To deduce 3D linear information which express shapes of buildings out of airphoto by fusion of airphoto and LiDAR data, this research went through 2 process. First, research made LiDAR data into projected data of 2D based on airphoto. For this, the virtual points were added to solve the visual problem of building boundary area which has poor information because the attribute in LiDAR data. Research construct irregular triangular nets from modified LiDAR data and judge visual triangular nets out of image. Through this, research can make reference to information of triangular nets in each image pixel. Second, 3D information was extracted from stereo images segments by combining extracted information of visible region and 2D irregular triangular nets. Matching way based on TIN for segments from stereo images was used. Matching condition based on TIN can improve about 20% of edge matching accuracy compared to existing quadrilateral condition of epipolar geometry.

Analysis of Camera Rotation Using Three Symmetric Motion Vectors in Video Sequence (동영상에서의 세 대칭적 움직임벡터를 이용한 카메라 회전각 분석)

  • 문성헌;박영민;윤영우
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.2
    • /
    • pp.7-14
    • /
    • 2002
  • This paper proposes a camera motion estimation technique using special relations of motion vectors of geometrically symmetrical triple points of two consecutive views of single camera. The proposed technique uses camera-induced motion vectors and their relations other than feature points and epioplar constraints. As contrast to the time consuming iterations or numerical methods in the calculation of E-matrix or F-matrix induced by epipolar constraints, the proposed technique calculates camera motion parameters such as panning, tilting, rolling, and zooming at once by applying the proposed linear equation sets to the motion vectors. And by devised background discriminants, it effectively reflects only the background region into the calculation of motion parameters, thus making the calculation more accurate and fast enough to accommodate MPEG-4 requirements. Experimental results on various types of sequences show the validity and the broad applicability of the proposed technique.

  • PDF

Building Roof Reconstruction in Remote Sensing Image using Line Segment Extraction and Grouping (선소의 추출과 그룹화를 이용한 원격탐사영상에서 건물 지붕의 복원)

  • 예철수;전승헌;이호영;이쾌희
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.2
    • /
    • pp.159-169
    • /
    • 2003
  • This paper presents a method for automatic 3-d building reconstruction using high resolution aerial imagery. First, by using edge preserving filtering, noise is eliminated and then images are segmented by watershed algorithm, which preserves location of edge pixels. To extract line segments between control points from boundary of each region, we calculate curvature of each pixel on the boundary and then find the control points. Line segment linking is performed according to direction and length of line segments and the location of line segments is adjusted using gradient magnitudes of all pixels of the line segment. Coplanar grouping and pplygonal patch formation are performed per region by selecting 3-d line segments that are matched using epipolar geometry and flight information. The algorithm has been applied to high resolution aerial images and the results show accurate 3D building reconstruction.

DSM Generation and Accuracy Comparison Using Stereo Matching Based on Image Segmentation (영상 분할 기반의 스테레오 매칭 기법을 이용한 DSM 생성 및 정확도 비교)

  • Kwon, Wonsuk
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.3
    • /
    • pp.401-413
    • /
    • 2019
  • The purpose of this study is to generate DSM using the stereo matching algorithm of worldview-1 stereo images and verify the accuracy of the generated DSM. To generate DSM, RPC block modeling was performed to correct RPC errors, and image matching was performed using SGM, which is a stereo matching algorithm after the epipolar image was generated. The COST for SGM was calculated by using CENSUS, and 4-paths and 8-paths were applied for COST aggregation in SGM. To verify the quality and accuracy of the generated DSM, it was compared with the LiDAR-derived DSM and the DSM generated by commercial SW. The results showed that the vertical accuracy of the generated DSM using 4-paths of COST aggregation was 1.647 m to 3.689 m (RMSE). In case of using 8-paths of COST aggregation was 1.550 m to 3.106 m (RMSE).