• 제목/요약/키워드: epiphytic dinoflagellate

검색결과 8건 처리시간 0.025초

Morphological and molecular characterization of the genus Coolia (Dinophyceae) from Bahía de La Paz, southwest Gulf of California

  • Morquecho, Lourdes;Garate-Lizarraga, Ismael;Gu, Haifeng
    • ALGAE
    • /
    • 제37권3호
    • /
    • pp.185-204
    • /
    • 2022
  • The genus Coolia A. Meunier 1919 has a global distribution and is a common member of epiphytic dinoflagellate assemblages in neritic ecosystems. Coolia monotis is the type species of the genus and was the only known species for 76 years. Over the past few decades, molecular characterization has unveiled two species complexes that group morphologically very similar species, so their limits are often unclear. To provide new knowledge on the biogeography and species composition of the genus Coolia, 16 strains were isolated from Bahía de La Paz, Gulf of California. The species were identified by applying morphological and molecular approaches. The morphometric characteristics of all isolated Coolia species were consistent with the original taxa descriptions. Phylogenetic analyses (large subunit [LSU] rDNA D1 / D2 and internal transcribed spacer [ITS] 1 / 5.8S / ITS2) revealed a species assemblage comprising Coolia malayensis, C. palmyrensis, C. tropicalis, and the C. cf. canariensis lineage. This is the first report of Coolia palmyrensis and C. cf. canariensis in Mexico and C. tropicalis in the Gulf of California. Our results strengthen the biogeographical understanding of these potentially harmful epiphytic dinoflagellate species.

우리나라 전국연안해역에서 저서 와편모조류의 출현 및 분포현황에 대한 첫 보고 (First Report for Appearance and Distribution Patterns of the Epiphytic Dinoflagellates in the Korean Peninsula)

  • 백승호
    • 환경생물
    • /
    • 제30권4호
    • /
    • pp.355-361
    • /
    • 2012
  • 우리나라 전국연안에서 해조류에 부착한 저서성 부착 맹독와편모조류의 분포특성을 파악하기 위해서 2011년 11월 25일에서 30일 사이 조사하였다. 해조류에 부착하는 맹독와편모조류 Gambierdiscus spp.는 전국 27개 정점 중 5개 정점[St. 6 (전남고흥군), St. 9 (경남남해군), St. 18 (경북 포항시 구룡포), St. 20 (경북 영덕), St. 26 (강원도 양양)]에서 출현하였다. Ostreopsis spp.는 3개 정점의 해조류[St. 11 (잎꼬시래기, 붉은까막살, 애기풀가사리), St. 18 (진두발, 마디잘록이, 참곱슬이), St. 21 (붉은까막살, 마디잘록이, 큰잎모자반)]에서 출현하였으며, 그중, 정점 18에서는 극히 높은 개체수(140 cells $g^{-1}$)가 관찰되었다. Prorocentrum lima는 서해와 남해안에서는 거의 출현하지 않았으나, 동해해역 대부분의 정점에서 높은 밀도로 출현하였다. Coolia spp.는 서해와 남해안에서는 전혀 출현하지 않았으나, 동해해역 일부 정점에서 극히 낮은 밀도로 출현하였다. 결과적으로 아열대성 저서 와편모조류는 우리나라 대부분의 연안해역 (동해를 중심으로)에 정착하고 있다는 것을 확인 할 수 있었고, 그들의 개체수 밀도는 해조류의 기질과 관련이 있을 것이다.

Morphology and molecular characterization of the epiphytic dinoflagellate Amphidinium massartii, isolated from the temperate waters off Jeju Island, Korea

  • Lee, Kyung Ha;Jeong, Hae Jin;Park, Kila;Kang, Nam Seon;Yoo, Yeong Du;Lee, Moo Joon;Lee, Jin-Woo;Lee, Soojin;Kim, Taekyung;Kim, Hyung Seop;Noh, Jae Hoon
    • ALGAE
    • /
    • 제28권3호
    • /
    • pp.213-231
    • /
    • 2013
  • Amphidinium massartii Biecheler is an epiphytic and toxic dinoflagellate. Prior to the present study, A. massartii has been reported in the waters off the Mediterranean, Australian, USA, and Canadian coasts. We isolated Amphidinium cells from the coastal waters of Jeju Island, Korea and their morphology and rDNA sequences indicated that they were A. massartii. Herein, we report for the first time the occurrence of A. massartii in the waters of the temperate region in the northwestern Pacific Ocean. The large subunit (LSU) rDNA sequences of the Korean strains were 0.7% different from those of an Australian strain of A. massartii CS-259, the closest species, but were 4.1-5.8% different from those of the other Australian strains and the USA strains of A. massartii and from those of Amphidinium sp. HG115 that was isolated from subtropical Okinawan waters. In phylogenetic trees based on LSU, internal transcribed spacer, small subunit rDNA, and cytochrome b sequences, the Korean strains belonged to the A. massartii clade, which was clearly divergent from the A. carterae clade. The morphology of the Korean A. massartii strains was similar to that of the originally described French strain and recently described Australian strain. However, we report for the first time here that scales were observed on the surface of the flagella. In conclusion, the Korean A. massartii strains have unique rDNA sequences, even though they have a very similar morphology to that of previously reported strains. This report extends the known range of this dinoflagellate to the temperate waters of the northwestern Pacific Ocean.

The occurrence of the ciguatera fish poisoning producing dinoflagellate genus Gambierdiscus in Pakistan waters

  • Munir, Sonia;Siddiqui, P.J.A.;Morton, Steve L.
    • ALGAE
    • /
    • 제26권4호
    • /
    • pp.317-325
    • /
    • 2011
  • Five benthic species of the genus Gambierdiscus (Dinophyceae) were observed for the first time in the coastal waters of Pakistan, Northern Indian Ocean. The morphology of the epiphytic, ciguatera-related toxic species G. toxicus, G. belizeanus, G. polynesiensis, G. australes and G. cf. yasumotoi are presented here, described by the Kofoid system of thecal plates Po, 3', 7", 6c, 8s, 5"', 1p, 2"" with differences in cell shape, cell size, plates, pores around the apical pore plate by using light and scanning electron microscopy. The occurrence of these potentially toxic dinoflagellate species in Pakistani coastal areas of Manora Channel and Balochistan during high temperatures of 28-$32^{\circ}C$ is cause of concern for human health impacts from ciguatera fish poisoning.

Comparative Ecological Characteristics of Two Potentially Toxic Epiphytic Dinoflagellate Species, Ostreopsis sp. and Coolia canariensis, Native to Jeju Island

  • Mi Ryoung Oh;Hyung Seop Kim;Bora Jang;Jong Hyeok Kim;Keon Gang Jang;Jong Woo Park;Wonho Yih
    • Ocean and Polar Research
    • /
    • 제45권2호
    • /
    • pp.57-69
    • /
    • 2023
  • Growth responses along the gradient of water temperature, salinity, and light intensity and cytotoxicity against Artemia nauplii were explored using Ostreopsis sp. and Coolia canariensis strains, representing the two potentially toxic epiphytic dinoflagellate (EPD) species from Jeju coastal waters of Korea. Variation in maximum growth rate (GRmax) and maximum biomass yield (Ymax) along the environmental gradients was quite contrasting between the two strains, which appears to be reflected in the in situ abundance distribution of the corresponding genera. The more eurythermal characteristics of Ostreopsis sp. strain were in good agreement with the relative distribution of Ostreopsis spp. and Coolia spp. in 520 macroalgal samples collected from 6 stations. The more stenohaline C. canariensis strain was well matched by a markedly narrower range of salinities in the in situ distribution of Coolia spp. than the salinity range for Ostreopsis species. The differences in light adaptation between the high light-preferring Ostreopsis sp. strain and the more euryphotic C. canariensis strain were remarkably consistent with the distinct vertical profiles of Ostreopsis spp. and Coolia spp. abundance in the red alga Amphiroa sp. off Moom-seom. Cytotoxicity against Artemia nauplii in the Ostreopsis sp. preparation with 1000 cells ml-1 was similar to that in C. canariensis preparation with 12000 cells ml-1, which is noteworthy. Thus, the new potential cytotoxicity risks from C. canariensis along with the well-known toxic genus Ostreopsis may be introduced to Jeju coasts, which necessitates further exploration into the contrasting ecological niches occupied by EPD species in relation to their cytotoxicity.

춘계 제주 연안에서 유독 저서성 와편모류 Ostreopsis sp.의 분포와 분자계통학적 위치 (Distribution and Molecular Phylogeny of the Toxic Benthic Dinoflagellate Ostreopsis sp. in the Coastal Waters off Jeju Island, Korea)

  • 김선주;서효정
    • 한국해양학회지:바다
    • /
    • 제24권2호
    • /
    • pp.236-248
    • /
    • 2019
  • 본 연구는 2017년 4월 춘계 제주 연안에서 총 7개의 정점(협재, 이호테우, 함덕, 성산, 표선, 남원, 사계)을 선정하여 해조류에 부착하여 서식하는 유독 착생 와편모류 Ostreopsis의 출현양상을 조사하고 분자계통학적 분석을 실시하였다. 본 연구 해역의 표층 수온은 $15.7^{\circ}C-18.3^{\circ}C$의 범위를 보였으며, 염분은 33.4-34.9의 범위로 나타났다. 각 연구 정점에서 채집된 전체 13종의 해조류 가운데 8종에서 Ostreopsis가 출현하였으며, 정점 6에서 출현한 홍조식물 참지누아리(Grateloupia filicina)에서 해조류 단위 무게당 Ostreopsis의 출현밀도($cells\;g^{-1}$)가 $157.5cells\;g^{-1}$로 가장 높은 농도로 출현하였다. Ostreopsis가 출현한 4개의 연구정점에서 분리한 종주들의 LSU rDNA D8/D10 영역의 염기서열은 모두 100% 동일한 것으로 나타났다. LSU rDNA 염기서열 정보를 이용한 분자계통수에서 이들은 모두 Ostreopsis cf. ovata의 잠재종(cryptic species)으로 알려진 Ostreopsis sp. 1의 분기군에 속하는 것으로 나타났다. Ostreopsis sp.1 종주를 이용하여 수온과 염분에 따른 생장 반응을 측정한 결과, $10-30^{\circ}C$의 광범위한 수온과 20-35의 염분 범위에서 뚜렷한 생장을 나타내었고, 수온 $25^{\circ}C$와 염분 30에서 $0.49d^{-1}$의 최고 생장률을 나타내었다. 또한, 수온 $10^{\circ}C$의 저온에서도 염분 35에서 뚜렷한 생장을 보여, 이들은 온대 해역에서 적응하여 정착한 종으로 판단된다.

Benthic dinoflagellates in Korean waters

  • Lim, An Suk;Jeong, Hae Jin
    • ALGAE
    • /
    • 제36권2호
    • /
    • pp.91-109
    • /
    • 2021
  • The occurrence of benthic dinoflagellates, many of which are known to be toxic, is a critical concern for scientists, government officers, and people in the aquaculture, dining, and tourism industries. The interest in these dinoflagellates in countries with temperate climate is increasing because tropical or subtropical species introduced into temperate waters by currents are able to survive the winter season in the new environment owing to global warming. Recently, several species from the benthic dinoflagellate genera Amphidinium, Coolia, Ostreopsis, Gambierdiscus, and Prorocentrum have been reported in the waters of the South and East Sea of Korea. The advent of the benthic dinoflagellates in Korean waters is especially important because raw or slightly cooked seaweeds, which may harbor these benthic dinoflagellates, as well as raw fish, which can be potentially intoxicated by phytotoxins produced by some of these benthic dinoflagellates, are part of the daily Korean diet. The recent increase in temperature of Korean coastal waters has allowed for the expansion of benthic dinoflagellate species into these regions. In the present study, we reviewed the species, distribution, and toxicity of the benthic dinoflagellates that have been reported in Korean waters. We also provided an insight into the ecological and socio-economic importance of the occurrence of benthic dinoflagellates in Korean waters.

Amphidinium stirisquamtum sp. nov. (Dinophyceae), a new marine sand-dwelling dinoflagellate with a novel type of body scale

  • Luo, Zhaohe;Wang, Na;Mohamed, Hala F.;Liang, Ye;Pei, Lulu;Huang, Shuhong;Gu, Haifeng
    • ALGAE
    • /
    • 제36권4호
    • /
    • pp.241-261
    • /
    • 2021
  • Amphidinium species are amongst the most abundant benthic dinoflagellates in marine intertidal sandy ecosystems. Some of them produce a variety of bioactive compounds that have both harmful effects and pharmaceutical potential. In this study, Amphidinium cells were isolated from intertidal sand collected from the East China Sea. The two strains established were subjected to detailed examination by light, and scanning and transmission electron microscopy. The vegetative cells had a minute, irregular, and triangular-shaped epicone deflected to the left, thus fitting the description of Amphidinium sensu stricto. These strains are distinguished from other Amphidinium species by combination characteristics: (1) longitudinal flagellum inserted in the lower third of the cell; (2) icicle-shaped scales, 276 ± 17 nm in length, on the cell body surface; (3) asymmetrical hypocone with the left side longer than the right; and (4) presence of immotile cells. Therefore, they are described here as Amphidinium stirisquamtum sp. nov. The molecular tree inferred from small subunit rRNA, large subunit rRNA, and internal transcribed spacer-5.8S sequences revealed that A. stirisquamtum is grouped together with the type species of Amphidinium, A. operculatum, in a fully supported clade, but is distantly related to other Amphidinium species bearing body scale. Live A.stirisquamtum cells greatly affected the survival of rotifers and brine shrimp, their primary grazers, making them more susceptible to predation by the higher tropic level consumers in the food web. This will increase the risk of introducing toxicity, and consequently, the bioaccumulation of toxins through marine food webs.