• Title/Summary/Keyword: epidermis

Search Result 796, Processing Time 0.033 seconds

Study on Dermatology In Oriental Medicine (피부생리의 원리 연구)

  • Kim Byoung Soo;Kang Jung Soo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.6
    • /
    • pp.1110-1116
    • /
    • 2002
  • The skin(皮膚) separates epidermis(皮) and dermis(膚) in Oriental medicine. epidermis and hair come from ectoderm as dermis comes from mesoderm in embryology. Epidermis and hair belong to the Metal(金) and dermis belongs to the Earth(土) in Oriental medicine. The lung is related to the skin and hair. The skin surface is nourished by the essence from the lung, and the. lung has the function of sending wei-qi(衛氣.: defensive Energy) to the skin surface to guarantee body resistance. The skin takes nourishment from blood(血) and express by qi(氣). The supply of nutrients to the lung and skin relies on the function of the spleen, pancreas and subcutis. Flaming of the heart fire may scorch the essence of the lung-metal, inducing dermatosis.

Morpho-Histogenesis of Fruit Sculpture and Dehiscence in Thespesia populnea(L.) Soland (Malvaceae)

  • Rao T.V. Ramana;Yash Dave;J.A. Inamdar
    • Journal of Plant Biology
    • /
    • v.30 no.3
    • /
    • pp.189-199
    • /
    • 1987
  • Morpho-histogenesis of fruit sculpture and dehiscence in Thespesia populnea is described. The fruit wall is differentiated into epicarp, mesocarp and endocarp. The epicarp is stony, rind-like, 30 to 35 layers thick and derived from outer epidermis, sub-epidermis and ground parenchyma of the ovary wall. The spherical and/of tangentially elongated, thick walled cells of epicarp are interspersed with radial bands of sclereids. The mesocarp is a product of the inner zone of ground parenchyma. At maturity 20 to 25 layers of thin walled parenchyma of mesocarp appear sinuous of disorgnized. The innermost 1 to 3 layers of ground parenchyma and sub-epidermis and inner epidermis form 35 to 40 layers thick endocarp. Due to the differentiation of fibrous tissue in the projection of median plane of carpel wall and a complete ring of fibrous zone in the endocarp, the dry capsule of Thespesia populnea dehises partially in loculicidal fashion.

  • PDF

Ultrastructure on the Integumentary Epidermis of the Marbled Sole, Limanda yokohamae (Teleostei: Pleuronectidae) (문치가자미 (Limanda yokohamae)피부 상피층의 미세구조)

  • Lee, Jung-Sick;Kang, Ju-Chan;Baek, Hea-Ja
    • Applied Microscopy
    • /
    • v.30 no.3
    • /
    • pp.303-310
    • /
    • 2000
  • Ultrastructures on the integumentary epidermis of the marbled sole, Limanda yokahamae, were examined by means of the light and transmission electron microscope. Epidermal layer consists of supporting cells, unicellular glands and accessory cells. The supporting cells were classified into superficial cell, intermediated cell and basal cell. The cytoplasm of supporting cells is divided into cortex and medullar part. In the cortex and medullar part, microfilaments and cell organelles are well developed, respectively. Gland cells are present in the superficial and middle epidermis. The cytoplasm of mucous cell reacted to blue in AB-PAS (pH 2.5). Club cell has a roundish central vacuole and well-developed microfilaments in the cytoplasm. Granular cells are occurs in the middle and basal epidermis , and the cytoplasm is occupied with membrane-bounded granules of electron dense. Chloride cells are present in the superficial epidermis , and the cytoplasm is occupied with tubular mitochondria. Three types of pigment cells can be distinguished by electron density of cytoplasmic inclusions.

  • PDF

Experimental Studies on the Expression of Hair Growth Related Factors after Acupuncture & Moxibustion Therapy (침구요법(鍼灸療法)에 의한 발모관련 인자들의 발현에 대한 실험적 연구)

  • Kim, Ho-Il;Kim, Cheong-Moo;Lee, Chang-Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.4
    • /
    • pp.674-682
    • /
    • 2011
  • The present study was undertaken to investigate the effect of acupuncture & moxibustion therapy on the hair follicle growth of skin 5 days and 10 days by macroscopic, microscopic and immunohistochemical methods. The results were as follows : Macroscopic hair follicle growth of plum-blossom needle treated group and strong moxibustion treated group was more increase than that of control group. Microscopic hair follicle growth of plum-blossom needle treated group and strong moxibustion treated group was hair growing cycle, anagen phase VI and that of control group and weak moxibustion treated group was hair growing cycle, anagen phase IV. Immunohistochemical observations on the expression of various growth factors, enzyme and receptor in hair follicle cycle after local treatment of acupuncture & moxibustion therapy are as follows: Expression of fibroblast growth factor was more intense in epidermis in plum-blossom needle treated group, epidermis and secondary hair germ cells in strong moxibustion treated group than control group. Expression of epidermal growth factor was more intense in epidermis in all experimental groups, and secondary hair germ cells in moxibustion treated group than control group. Expression of c-kit receptor was more intense in epidermis, secondary hair germ cells, outer root sheath in all experimental groups than control group. Expression of protein kinase C-${\alpha}$ was more intense in epidermis, secondary hair germ cells, outer root sheath in all experimental groups than control group. Expression of vascular endothelial growth factor was more intense in epidermis, bulge, secondary hair germ cells, outer root sheath in plum-blossom needle treated group and strong moxibustion treated group than control group. We concluded that acupuncture & moxibustion therapy related to the expression of various growth factors, enzymes and receptor on the hair growth cycle for hair growth.

The Expression Pattern of the Tight Junction Protein Occludin in the Epidermal Context When Comparing Various Physical Samples (신체 부위별 표피에서 밀착연접 단백질 중 오클루딘의 발현도 연구)

  • Kim, Ji Sook;Jang, Hyung Seok
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.47 no.4
    • /
    • pp.267-272
    • /
    • 2015
  • 'Tight junctions (TJ)' have recently been identified in the granular cell layer of the human epidermis, where they contribute to the normal adhesion between keratinocytes and to the physiologic barrier function of the epidermis. Among the TJ proteins in the epidermis, occludin is an important transmembrane protein, which is considered as a major component. The purpose of this study is to investigate whether regional variation exists in the expression of the tight junction protein occludin in normal human epidermis. Indirect immunofluorescence staining for occludin was performed with specimens taken from different areas of normal skin (4 from each of 7 different anatomical sites, including the scalp, face, posterior neck, upper arm, abdomen, lower back, and inner thigh). The degrees of the expression-intensity in each specimen were estimated with the reciprocals of positive end-point titer of occludin in an indirect immunofluorescence study. The highest degree expression-intensity of the TJ protein occludin among the different areas of normal epidermis was observed on the face and abdomen with a titer of 600 (p=0.001). The lowest intensity of expression of occludin was seen in the epidermis from the upper arm. Skin specimens from the scalp, neck, back, and leg demonstrated intermediate degrees of the expression in intensity. The expression of occludin in the skin samples obtained from different locations of the body showed a statistically significant variation. This suggests that there is a certain degree of regional variation in the expression-intensity of TJ protein 'occludin' in the human epidermis.

Red-Colored Phenomena and Morphochemical Characteristics of Red-Colored Substances in Ginseng Roots (Panax ginseng C.A. Meyer) (인삼 적변현상과 적변물질의 형태-화학적 특성)

  • 윤길영;양덕조
    • Journal of Ginseng Research
    • /
    • v.24 no.3
    • /
    • pp.107-112
    • /
    • 2000
  • One of the physiologically important ginseng diseases is red-colored phenomena (RCP) that is caused by accumulation of red-colored substances on the epidermis of ginseng roots. Although RCP severely deteriorates the quality of ginseng products, there has been little information on what red-colored substance is and how RCP occurs. Therefore, the heavy losses of cultivators and ginseng industry are suffering by RCP, For this reason, we have investigated with the morphochernical characteristics of RCP to find out main cause of it. The red-colored substances (RS) on the epidermis of red-colored ginseng (RCG) were examined using inverted light microscope, confocal laser scanning microscope (CLSM)and furier transform infrared (FT/IR) spectrometer. Red brown substances were accumulated in the cell wall of the epidermis from early stage to late stage of RCC. Especially, cell wall of the late stage of RCG was covered with the sub-stances with 80~ 130 fm thick. Therefore, the cell wall of RCG cannot protect the ginseng root cells from the mechanical damages, bacteria and fungi. To analyse red substances of roots, RS were isolated from epidermis of RCG and extracted using various solvents. RS is strongly insoluble but it was bleached by oxidizing agents including 12% (v/v) NaOCl. Therefore, RS was Presumed to make up of high chelation power. The proriles of FT/IR spectra or both healthy ginseng (HEG) and RCG showed a significant difference at two wavelength,2857 cm$\^$-1/(C-H) and 1032 cm$\^$-1/(S=O), respectively. Furthermore, absorption peak of 2857cm$\^$-l/ appears on the only epidermis of RCG. The other peak is shown lower absorption rate on the epidermis of RCG than that of healthy ginseng. Also, FT/IR spectra of the mixture of carboxym-ethylcellulose (CMC) and iron (Fe$\^$3+/) were very similar to RCG spectrum profiles. One of a interesting fact is that the contents of phenolic compounds at the epidermis of healthy ginseng were highest. The results of these experiments sup-port the RCP was closely related with the chemical interaction between inorganic elements (Fe) of rhizosphere and organic matters (cellulose, cellobiose, cell sap, etc.) of ginseng roots.

  • PDF

Mucous Cells and Their Structure on the Epidermis of Five Appendages in the Korean Flat- headed Goby, Luciogobius guttatus (Pisces; Perciformes) (한국산 미끈망둑 Luciogobius guffafus(농어목) 5개 부속지의 표피구조 및 점액세포)

  • Park, Jong-Young;Kim, Ik-Soo;Lee, Yong-Joo;Baek, Hyun-A
    • Korean Journal of Ichthyology
    • /
    • v.17 no.3
    • /
    • pp.167-172
    • /
    • 2005
  • The flat-headed goby, Luciogobius guttatus, inhabits tidepools and river mouths, and stays under stones on the dried bottom for the duration of the low tide. To know the relationship of its respiration and habit in this fish, the epidermis of five appendages was observed. The epidermis has three layers: the outermost layer, middle layer and stratum germinativum. The outermost layer is composed of polygonal cells or rather flattened cells, and mucous cells. The unicellular mucous cells showing acid mucopolysaccharides are 11.1 to $16.1{\mu}m$ in mean height and in one or two rows. The middle layer consists mainly of large epidermal cells that are swollen by adjacent epidermal cells and arranged in a web-shaped structure. The swollen cells are 12.3 to $15.2{\mu}m$ in mean height and arranged in one to 11 layers. Since the swollen cells occupy the entire height of the epidermis, the epidermis is thick. A large number of blood capillaries are present just below the stratum germinativum. Taste buds are distributed at intervals on the surface of the epidermis. Based on these epidermal strucures, it is likely that L. guttatus utilizes cutaneous respiration in a dual respiratory systems.

Development of Epidermal Idioblasts in the Reproductive Structures of Lycopersicon esculentum (토마토 (Lycopersicon esculentum) 표피조직의 이형세포 분화 발달)

  • Park, Eun-Hee;Kim, In-Sun
    • Applied Microscopy
    • /
    • v.34 no.4
    • /
    • pp.295-303
    • /
    • 2004
  • Plants of Lycopersicon esculentum, containing various organic compounds, are known to develop idioblasts in their epidermis. Lycopersicon esculentum have long been investigated in many areas, but structural aspects of the epidermis of various organs have not been carried out in detail. Thus, the present study attempted to reveal the patterns of idioblast development, particularly those of the reproductive organs, in L. esculentum epidermis using scanning electron microscopy. The present study mainly focused on patterns of the stomata and trichome types. Two types of stomata were developed in the flowers and fruits: anomocytic stomata (stomata type I) were distributed normally throughout the epidermis, whereas actinocytic raised stomata (stomata type II) were found variously in different epidermal tissues. For the trichomes, both glandular and non-glandular types were developed in the epidermis. The former included peltate glandular trichomes having four head cells (trichome type I) and capitate multicellular glandular trichomes (trichome type II). The latter included non-glandular short trichomes (trichome type III) and considerably elongated trichomes with basal rosette cells (trichome type IV). In paticular, the raised stomata were well-developed in the peduncles and the peltate glandular trichomes were prominent in the sepal and ovary epidermis. Transmission electron microscopy on the ontogeny and ultrastructural differentiation of these idioblasts, associated with the current result, will aid us in better understanding of the structure and functional relationship in the epidermal differentriation of Lycopersicon esculentum.

Trichome Type and Development in Leaves of Althaea rosea (접시꽃 (Althaea rosea) 엽육표피에서의 모용의 분화 발달)

  • Kim, In-Sun;Lee, Seung-Hee
    • Applied Microscopy
    • /
    • v.35 no.2
    • /
    • pp.97-104
    • /
    • 2005
  • Plant epidermis consists of relatively unspecialized cells and more specialized cells of various structure and function. Trichomes are specialized cells originated from the epidermis and much attention has been paid to the plants developing trichomes with peculiar structure and function. The present study has been undertaken to examine the trichome type noticed in the leaf epidermis of Althaea rosea using scanning electron microscopy. Four types, namely simple, short-and long-tufted, and glandular hairs, were detected in their epidermis. Their Distribution, frequency and structure varied by the development and epidermal surface. The most frequently distinguished type was the tufted ones growing in young leaves of the abaxial epidermis, while the simple hairs were rare throught the examination. The short-tufted hairs branched up to seven times having each branchlet about $160{\sim}210{\mu}m$ in length at maturity. The long-tufted hairs exhibited up to ten branchlets, where branchlets could reach up to $900{\sim}1,000{\mu}m$ long when fully expanded. Glandular trichome was the peltate type comprising $1{\sim}2$ secretory head cells, 2 stalk cells and a basal cell. The short peltate glandular hairs, usually not exceeding $40{\mu}m$, differentiated more along the areoles in the adaxial epidermis. The function of these trichomes in A. rosea has been still obscure, but it has been speculated that they probably play a role in protection; non-glandular ones possibly providing a defense against insects and secretory glandular type participating in chemical defense. Structural features of these trichomes at cellular level will be discussed in the following study of transmission electron microscopy.