• 제목/요약/키워드: enzyme-treatment

검색결과 2,698건 처리시간 0.065초

두유(豆乳)의 품질향상을 위한 효소제(酵素劑) 처리의 효과 (Efficacy of Enzyme Treatment for the Quality Improvement of Soymilk)

  • 유정선;이서래
    • 한국식품과학회지
    • /
    • 제20권3호
    • /
    • pp.426-432
    • /
    • 1988
  • ${\alpha}-galactosidase$ 및 protease활 을 가지는 효소제 제를 두유(豆乳) 제조시에 처리하여 장내(腸內) 가스발생인자(flatulence factor)를 제거 하는 동시에 두유의 수율(收率)과 소화율(消化率)을 향상시키고자 실험한 결과는 다음과 같다. 두유의 생산량 및 단백질 수율은 효소제(酵素劑) 처리에 의하여 증가하지 않았다. 두유 중 고형분의 양은 pH 6에서 pH10으로 높아질수록, 효소제 처리온도가 $30^{\circ}C$에서 $60^{\circ}C$로 높아질수록 증가하였다. 두유중 TCA가용성 질소화합물의 비율은 효소제의 농도가 높을 수록, pH 4에서 pH10으로 증가 할수록, 처리시간이 길어질수록 증가하였고 처리온도 $50^{\circ}C$까지 증가하는 경향을 보였다. 장내 가스 발생인자로 알려진 raffinose와 stachyose의 함량도 효소제의 농도가 증가할수록, 처리 온도가 $30^{\circ}C$에서 $60^{\circ}C$로 증가함에 따라 많이 감소하였으며 최적 pH는 4-5사이였다.

  • PDF

Determination of Energy and Nutrient Utilization of Enzyme-treated Rump Round Meat and Lotus Root Designed for Senior People with Young and Age d Hens as an Animal Model

  • Park, Okrim;Kim, Jong Woong;Lee, Hong-Jin;Kil, Dong Yong;Auh, Joong-Hyuck
    • 한국축산식품학회지
    • /
    • 제36권1호
    • /
    • pp.109-113
    • /
    • 2016
  • This study aimed to examine the nutrient utilization of rump round meat and lotus root using young (32 wk) and aged hens (108 wk) as an animal model. Rump round meat and lotus root were prepared with or without enzymatic treatment. For each age group of laying hens, a total of 24 Hy-Line Brown laying hens were randomly allotted to one of two dietary treatments with six replicates. For rump round meat, the true total tract retention rate (TTTR) of dry matter (DM) and nitrogen (N) were unaffected by either enzymatic treatment or hen age. However, aged hens had greater (p<0.01) TTTR of energy and crude fat than young hens. Enzymatic treatment did not influence the TTTR of energy or crude fat. In addition, we did not observe any significant interaction between the TTTR of DM, energy, N, or crude fat in rump round meat and hen age or enzymatic treatment. The TTTR of DM remained unchanged between controls and enzyme-treated lotus root for young hens. However, enzyme-treated lotus root exhibited greater (p<0.05) TTTR of DM than control lotus root for aged hens, resulting in a significant interaction (p<0.05). The TTTR of energy and N in lotus roots were greater (p<0.01) for aged hens than for young hens. In conclusion, enzymatic treatment exerted beneficial effects on energy and nutrient utilization in aged hens, suggesting the aged hen model is practical for simulation of metabolism of elderly individuals.

효소처리와 열처리에 의한 인삼 추출물의 항산화 활성 (Antioxidant Activity of Ginseng Extracts Prepared by Enzyme and Heat Treatment)

  • 김영찬;조장원;이영경;유경미;노정애
    • 한국식품영양과학회지
    • /
    • 제36권11호
    • /
    • pp.1482-1485
    • /
    • 2007
  • 본 연구는 효소처리와 열처리를 통하여 인삼의 추출수율과 비사포닌계 페놀성 화합물의 함량을 증가시키고, 각 처리군의 항산화 활성을 시험하였다. 효소처리의 경우 pectinase(76.0%)>cellulase(44.7%)>${\alpha}-amylase$(43.1%)>protease(34.3%)의 순으로 처리효소에 따라 큰 차이를 보였으며, 열처리구의 경우 $90^{\circ}C$ 처리구의 추출수율이 48.7%로 가장 낮았으며, 그 외의 온도 구간에서는 $51.1{\sim}53.1%$로 비슷한 추출수율을 보였다. 총페놀 함량은 pectinase 처리구가 2.21%로 가장 높았으며, 열처리의 경우 $90^{\circ}C$ 처리구에서 2.34%로 가장 높게 나타났다. 시료를 100 mg/mL로 처리한 경우는 용매추출물에서 $12.3{\sim}33.2%$, 효소처리구에서 $29.7{\sim}40.3%$, 열처리구는 $57.8{\sim}75.2%$의 DPPH 라디칼 소거활성을 보였다. ABTS 라디칼 소거능은 pectinase 처리구가 60%의 라디칼 소거활성을 보여 가장 높은 활성을 보였으며, 열처리구의 경우 $175^{\circ}C$ 처리구에서 60% 이상의 라디칼 소거능을 보였으며, $150^{\circ}C$, $120^{\circ}C$, $90^{\circ}C$ 순으로 소거활성이 낮았다.

홍삼의 사염화탄소 및 갈락토사민 유발 간독성에 대한 치료효과 (The Therapeutic Effects of Korean Red Ginseng on Carbon Tetrachloride- and Galactosamine-induced Hepatotoxicity in Rats)

  • 이정규;한용남;김나영;최종원
    • Journal of Ginseng Research
    • /
    • 제27권1호
    • /
    • pp.11-16
    • /
    • 2003
  • In this study, we investgated the effect of Red Ginseng (KRG) on liver damage induced by carbon tetrachloride (CTC) and galactosamine (GalN) in rats using indicator enzymes such as serum alanine/aspartate aminotransferases, sorbital dehydrogenase, lactate dehydrogenase, and ${\gamma}$-glutamyltransferase. Treatment of KRG restored these enzyme activities to near normal level compared to CTC or GalN treatment alone. Treatment of KRG also enhanced hepatic microsomal enzyme system, malondialdehyde formation, and depletion of reduced glutathione content, which were reduced by CTC or GalN. We also found that the decreased activities of glutathione S-transferase and glutathine reductase but not ${\gamma}$-glutamycysteine synthetase after KRG treatment restored to normal level. These results indicate that KRG has potent therapeutic activity against CTC- and GalN-induced hepatotoxicity in rat.

효소처리한 도공지의 인쇄적성에 관한 연구 (The Study of the Printability Coated Paper by the Enzyme Treatment)

  • 김창근;양이석;김병현
    • 한국인쇄학회지
    • /
    • 제24권1호
    • /
    • pp.13-22
    • /
    • 2006
  • We investigated the effects of the enzyme treatment of fiber for printability of coated paper. The results could summarized as follows, 1. The samples with enzyme treatment (average 87.8%) have higher ink gloss than the blank (85.6%). Printed density showed same trends with the ink gloss. However, the ${\beta}$-Glucosidase treated sample showed the lowest printed density (2.14 %) due to the lowest thickness of the ink layer, which is influenced by coated weight and surface smoothness. 2. The samples whose base paper was Xylanase and ${\beta}$-Glucosidase treated showed higher surface strength (4.2% and 4.0%, respectively) than the blank while the samples with the Hernicellulase and ${\beta}$-Glucuronidase treatment showed lower surface strength (3.2%and 3.7%, respectively) due to the influence of air permeability. 3. Hemicellulase and ${\beta}$-Glucuronidase treated base paper, which have relatively low air permeability, showed better ink repellence (4.3 and 4.4 %, respectively) than the blank (3.8 %). 4. The blank and the Xylanase treated base paper showed high set-off, which is the last category of printability.

  • PDF

Physicochemical Properties of Enzymatically Modified Maize Starch Using 4-${\alpha}$-Glucanotransferase

  • Park, Jin-Hee;Park, Kwan-Hwa;Jane, Jay-Iin
    • Food Science and Biotechnology
    • /
    • 제16권6호
    • /
    • pp.902-909
    • /
    • 2007
  • Granular maize starch was treated with Thermus scotoductus 4-${\alpha}$-glucanotransferase (${\alpha}$-GTase), and its physicochemical properties were determined. The gelatinization and pasting temperatures of ${\alpha}$-GTase-modified starch were decreased by higher enzyme concentrations. ${\alpha}$-GTase treatment lowered the peak, setback, and [mal viscosity of the starch. At a higher level of enzyme treatment, the melting peak of the amylose-lipid complex was undetectable on the DSC thermogram. Also, ${\alpha}$-GTase-modified starch showed a slower retrogradation rate. The enzyme treatment changed the dynamic rheological properties of the starch, leading to decreases in its elastic (G') and viscous (G") moduli. ${\alpha}$-GTase-modified starch showed more liquid-like characteristics, whereas normal maize starch was more elastic and solid-like. Gel permeation chromatography of modified starch showed that amylose was degraded, and a low molecular-weight fraction with $M_w$ of $1.1{\times}10^5$ was produced. Branch chain-length (BCL) distribution of modified starch showed increases in BCL (DP>20), which could result from the glucans degraded from amylose molecules transferred to the branch chains of amylopectin by inter-/intra-molecular transglycosylation of ${\alpha}$-GTase. These new physicochemical functionalities of the modified starch produced by ${\alpha}$-GTase treatment are applicable to starch-based products in various industries.

오이 추출물에 존재하는 Superoxide Dismutase의 열안정성 (Thermostability of Superoxide Dismutase from Cucumber(Cucumis sativa))

  • 박인식;김은애;김기남;길지은;이민경;김석환;서정식
    • 한국식품영양과학회지
    • /
    • 제27권6호
    • /
    • pp.1105-1109
    • /
    • 1998
  • The superoxide dismutase(SOD) in peeled pericarp of cucumber was most stable at pH 8.0 and relatively stabe between pH 5.0 and 9.0. The enzyme was stable up to 6$0^{\circ}C$ and retained 12% by heat treatment at 10$0^{\circ}C$ for 5 min. At pH 2.0, the peeled pericarp enzyme activity was decreased to 10% by incubation for 3 hrs. However, the enzyme activity was increased above 25% after incubating the enzyme at pH 7.0 for 6 hrs. Retention of SOD activity in cucumber by various heating methods was also measured. The residual SOD activities of peeled pericarp and whole cucumber was estimated to be 25% and 27% after blanching(2 min), respectively. The skin enzyme retained 53% of its activity after steaming (3 min). When the peeled pericarp enzyme was incubated at 4$^{\circ}C$ for 20 days, the enzyme activity remained about 81%. However, when the enzyme incubated at 3$0^{\circ}C$ for 20 days, the peeled pericarp enzyme activity decreased to 17% of its original activity. The enzyme activity of peeled pericarp cucumber was not changed after exhaustive dialysis for 3 days, which indicated that the SOD activity in cucumber seems to have molecular weight above 12,000.

  • PDF

알칼라제를 이용한 폴리아미드 섬유의 효소가공 (Enzymatic Treatment of Polyamide Fiber by Alcalase)

  • 송유선;송화순
    • 한국의류학회지
    • /
    • 제35권8호
    • /
    • pp.1006-1013
    • /
    • 2011
  • An enzymatic treatment method using alcalase was introduced to improve the moisture characteristic of the polyamide fiber. The alcalase treatment conditions such as the pH, treatment temperature, enzyme concentration, and treatment time were optimized by measuring the amino groups. The changes in the weight loss, tensile strength, moisture regain, water contact angle (WCA), and water absorption rate of the polyamide fiber with the changes in the alcalase treatment conditions were evaluated. The optimum alcalase treatment conditions for polyamide fiber were found to be a treatment temperature of 50oC, a treatment time of 50 minutes, an alcalase concentration of 10% (owf), and a pH of 7.0. The ethylenediaminetetraacetic acid (EDTA) and L-cysteine accelerated the activity of the enzyme; however, they did not have an effect on the amino group production of the fiber surface. The alcalase treatment of the polyamide fiber improved the fiber's moisture regain, WCA, and absorption rate due to the amino group on the fiber surface. The results showed that the alcalase treatment of polyamide fiber is an effective method to improve the moisture characteristic of the polyamide fiber.

Aureobasidium pullulans C-23이 생산하는 세포외 fructosyl transferase의 특성 (Characterization of extracellular fructosyl transferase from aureobasidium pullulans C-23)

  • 이광준;최정도;임재윤
    • 미생물학회지
    • /
    • 제29권5호
    • /
    • pp.301-306
    • /
    • 1991
  • Extracellular fructosyl transferase from Aureobasidium pullulans C-23 was characterized. The molecular weight of the isolated enzyme was determined to be approximately 170,000 by SDS polyacrylamide gel electrophoresis. The enzyme has the pI value of about 3.7. The enzyme was almost completely inhibited by 5mM $Hg^{2+}$ , but was not significantly affected by other cations tested. The enzyme was inactivated by treatment of tryptophan-specific reagent N-bromo- succinimide and tyrosine-specific reagent iodine. The substrate sucrose showed protective effect on the inactivation of the enzyme by the both reagents. These results suggest that tryptophan and tyrosine residues are probably located at or near active site of the enzyme.

  • PDF

상업용 목질섬유소 분해 효소의 특성 (Characteristics of Commercial Celluloytic Enzymes)

  • 김영욱;김철현;박성배;엄태진
    • 펄프종이기술
    • /
    • 제36권3호
    • /
    • pp.1-8
    • /
    • 2004
  • It is very difficult to compare directly the research results of enzymatic process in pulp and paper industry because commercial enzymes have diversity in its property. The chemical and biological properties of commercial enzymes were Investigated to help comparison of various commercial enzymes each other. In most case, the solid content of liquid enzymes was about 20%. The higher protein content in enzyme product does not mean the higher enzyme activity. Enzymes for paper process should selected by basis of enzyme activity, not by price of enzyme products. The chemical composition of fiber was not so much change with enzyme treatment. The enzymatic hydrolysis of fiber might negligible in paper process.