• Title/Summary/Keyword: enzyme stability

Search Result 669, Processing Time 0.03 seconds

Amplicilin biosynthesis by immobilized enzyme

  • Kim, Young-Sik;Ryu, Dewy-D.Y.
    • Archives of Pharmacal Research
    • /
    • v.3 no.1
    • /
    • pp.7-12
    • /
    • 1980
  • Ampliciline was synthesized from 6-amino-pencillanic acid (6-APA) and D-.alpha. phenylglycine methyl ester by using amplicilin synthesizing enzyme from Peudomonas melanogenum (IAM 1655). The whole cell enzyme was immobilized by entrapping it in the polyacrylamide gel lattices. The polymer used in the enzyme entrapment was made from 150 mg per ml of acrylamide monomer and 8 mg per ml of N, N'-methylenebisacrylamide. About 200 mg/whole cell enzyme was mixed in the polymer for entrapment. The maximal activity retention after immobilization was 56%. The optimal pH values for the whole cell enzyme and the immobilized whole cell enzyme were 6.0 and 5.9, respectively. The optimal temperature for the enzyme activity were the same for both type of preparations. The enzyme stabilities against pH and heat increased for immobilized whole cell enzyme. Immobilized cell was more stable especially in the acidic condition while both type were found to be very suceptible to thermal inactivation at a temperature above 4.deg.C. The kinetic constants obtained from Lineweaver-Burk plot based on two substate reaction mechanism showed somewhat higher value for immobilized whole cell enzyme as compared to the whole cell enzyme : the Km value for 6-APA were 7.0 mM and 12.5 mM while Km values for phenylglycine methyl ester were 4.5 mM and 8.2 mM, respectively. Using the immobilized whole cell enzyme packed in a column reactor, the productivity of ampiciline was studied by varying the flow rate of substrate solution. At the space velocity, SV, 0.14 hr$^{-1}$ the conversion was 45%. Operational stability found in terms of half life was 30 hr at SV = 0.2 hr.

  • PDF

Characterization of Organic Solvent Stable Lipase from Pseudomonas sp. BCNU 106 (Pseudomonas sp. BCNU 106이 생산하는 유기용매 내성 리파아제의 특성)

  • Choi, Hye Jung;Hwang, Min Jung;Kim, Dong Wan;Joo, Woo Hong
    • Journal of Life Science
    • /
    • v.26 no.5
    • /
    • pp.603-607
    • /
    • 2016
  • A crude extracellular lipase from solvent-tolerant bacterium Pseudomonas sp. BCNU 106 was highly stable in the broad pH range of 4-10 and at temperature of 37℃. Crude lipase of BCNU 106 exhibited enhanced stability in 25% organic solvents such as xylene (121.85%), hexane (120.35%), octane (120.41 %), toluene (118.14%), chloroform (103.66%) and dodecane (102.94%) and showed excellent stability comparable with the commercial immobilized enzyme. In addition, the stability of BCNU 106 lipase retained above 110% of its enzyme activity in the presence of Cu2+, Hg2+, Zn2+ and Mn2+, whereas Fe2+ strongly inhibited its stability. The detergents including tween 80, triton X-100 and SDS were positive signals for lipase stability. Because of its stability in multiple organic solvents, cations and surfactants, the Pseudomonas sp. BCNU 106 lipase could be considered as a potential biocatalyst in the industrial chemical processes without using immobilization.

Stability of the enzyme-modified starch-based hydrogel model premix with curcumin during in vitro digestion (효소변형 전분기반 하이드로젤 모델 프리믹스 내 탑재된 커큐민의 소화과정 중 안정성)

  • Kang, Jihyun;Rho, Shin-Joung;Lee, Jiyoung;Kim, Yong-Ro
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.4
    • /
    • pp.365-374
    • /
    • 2021
  • In this study, the effect of enzyme-modified starch used in the preparation of filled hydrogel powder loaded with curcumin (FHP) on redispersibility, thermal and UV stability, and curcumin retention during in vitro digestion was investigated. FHP maintained stability without layer separation when redispersed and showed more stability against UVB than the emulsion powder (EMP). There was no significant difference in the chemical stability of curcumin between rice starch-based filled hydrogel powder (RS-FHP) and enzyme-modified starch-based filled hydrogel powder (GS-FHP). However, the gel matrix of GS-FHP maintained greater stability of lipid droplets in the stomach compared to RS-FHP, thereby improving the retention rate of curcumin after in vitro digestion. GS-FHP could be used as a novel material for developing premixes that require stable formulation and maintenance of functional substances, as it can increase the dispersion stability and retention rate of functional substances after digestion.

Studies on Higher Fungi in Korea (II)-Proteolytic Enzyme of Agaricus bisporus (Lange) Sing- (한국산 고등균류에 관한 연구 (제 2보)-양송이 중의 단백분해효소 활성-)

  • Eun, Jae-Soon;Yang, Jae-Heon;Cho, Duck-Yee;Lee, Tae-Kyu;Park, In-Hwa
    • Journal of Pharmaceutical Investigation
    • /
    • v.19 no.1
    • /
    • pp.9-14
    • /
    • 1989
  • In order to study the protease from Agaricus bisporus (Lange), the crude protease preparation was separated by fractionation of mushroom extracts with ammonium sulfate. It was found that extracts from Agaricus bisporus (Lange) Sing. contained protease. The optimum pH of the enzyme was 6.0, and the pH range at which the enzyme was stable was 4.0 to 7.0. The optimum temperature at which the enzyme showed the highest proteolytic activity was $50^{\circ}C$, while the enzyme was instantly inactivated at about $60^{\circ}C$. The enzyme activity was inhibited by $Ag^+$, $Hg^{2+}$, $Cu^{2+}$, $Ba^{2+}$, $Fe^{3+}$, $Co^{2+}$, $Ca^{2+}$, $Pb^{2+}$, $Mg^{2+}$ and $Mn^{2+}$. The $K_m$ value was 0.32 mM with Hammarsten casein.

  • PDF

Production of Fructo-oligosaccharides by the Fructosyltransferase Immobilized onto an lon-exchange Resin (이온교환수지에 고정화된 Fructosyltransferase를 이용한 Fructo-oligosaccharides의 생산)

  • 윤종원;이민규송승구
    • KSBB Journal
    • /
    • v.8 no.4
    • /
    • pp.307-312
    • /
    • 1993
  • A fructosyltransferase from Aureobasidium pullulans was immobilized onto a polystyrene-type anionic ion-exchange resin and the production of fructo-oligosaccharides was Investigated by the immobilized enzyme. The optimum pH and the temperature of immobilized enzyme were found to be pH 5.0, $55^{\circ}C$ respectively. The thermal stability of the enzyme was greatly enhanced after immobilization. The reaction profiles of the immobilized enzyme was almost identical to those of the free cells and the soluble enzyme. The immobilized enzymes were stable up to 20 cycles without loss of initial activity in a repeated-batch operation $50^{\circ}C$.

  • PDF

Aspergillus niger가 생성하는 생전분 분해효소의 정제와 특성

  • 정만재
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.2
    • /
    • pp.166-172
    • /
    • 1997
  • Aspergillus niger was selected as a strain producing the potent raw starch hydorlyzing enzyme. These experiments were conducted to investigate the conditions of the glucoa- mylase production, the purification of the enzyme, some characteristics of the purified enzyme and hydrolysis rate on various raw starches such as com, rice, potato, glutinous rice, sweet potato, wheat and barley. The optimum cultural temperature and time for the enzyme production on wheat bran medium were $30^{\circ}C$ and 96hrs, respectively. The respective addition of yeast extract and nutrient broth on wheat bran medium increased slightly the enzyme production. The enzyme was purified by ammonium sulfate fractionation and DEAE-cellulose column chromatography. The specific activity of the purified enzyme was 30.7u/mg-protein and the yield of enzyme activity was 25.8%. The purified enzyme showed a single band on polyacrylamide disc gel electrophoresis and its molecular weight was estimated to be 56,000 by SDS-polyacrylamide disc gel electrophoresis. The isoelectric point for the purified enzyme was pH3.7. The optimum temperature and pH were $65^{\circ}C$ and pH 4.0, respectively. The purified enzyme was stable in the pH range of pH 3.0-9.5 and below $45^{\circ}C$, and its thermal stability was slightly increased by the addition of $Ca^{2+}$. The purified enzyme was activated by $Co^{2+},\;Sr^{2+},\;Mn^{2+},\;Fe^{2+},\;Cu^{2+}$. Raw rice starch, raw corn starch, raw glutinous rice starch, raw sweet potato starch, raw wheat starch and raw barley starch showed more than 90% hydrolysis rate in 48hrs incubation. Even raw potato starch, most difficult to be hydrolyzed, showed 80% hydrolysis rate. The purified enzyme was identified as glucoamylase.

  • PDF

Purification and Enzyme Property of a Cell-Wall Lytic Enzyme Produced by Bacillus sp. LM-8 against Lactobacillus plantarum. (Bacillus sp. LM-8이 생산하는 Lactobacillus plantarum 용균 효소의 정제 및 효소 특성)

  • 마호우;신원철
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.1
    • /
    • pp.33-38
    • /
    • 2002
  • Purification and characterization of enzyme property of a cell-wall lytic enzyme against Lactobacillus plantarum were carried out. Final specific activity of purified enzyme was 5.8 units/mg and purity of the enzyme was increased 8.3 fold compared with the enzyme activity in culture broth. The molecular weight of purified enzyme was estimated to be 60,000 kDa by gel filtration and SDS-polyacrylamide gel electrophoresis. Optimal pH and temperature for the activity of this enzyme were 3.0 and 4$0^{\circ}C$, respectively. The cell-wall lytic enzyme activity was maintained at 3$0^{\circ}C$ when treating the enzyme for 30 mins, whereas the activity was decreased to 80% of the maximum level at 4$0^{\circ}C$ The enzyme activity exhibited good stability at the range of pH 4~7.

Improvement of ${\beta}-glucosidase$ Activity of Olea europaea Fruit Extracts Processed by Membrane Technology

  • Mazzei, R.;Giomo, L.;Spadafora, A.;Mazzuca, S.;Drioli, E.
    • Korean Membrane Journal
    • /
    • v.8 no.1
    • /
    • pp.58-66
    • /
    • 2006
  • The ${\beta}-glucosidase$ from olive fruit is of particular interest compared to the ones from other sources because it has shown to have high specifity to convert the oleuropein into dialdehydes, which have antibacterial activity and are of high interest for their application in the food and pharmaceutical fields. The enzyme is not yet commercially available and advanced clean and safe technologies for its purification able to maintain the functional stability are foreseen. The purification of this protein from fruit extracts has been already tempted by electrophoresis but either enzyme deactivation or high background with unclear profiles occurred. In this work, fruit extracts obtained from the ripening stage that showed the highest enzyme activity have been processed by diafiltration and ultrafiltration. Asymmetric membranes made of polyamide or polysulphone having 50 and 30 kDa molecular weight cut-off, respectively, were tested for the diafiltration process. Ultrafiltration membranes made of polyethersulfone with 4 kDa molecular weight cut-off were used to concentrate the dia-filtered permeate solutions. The efficiency of the separation processes was evaluated byenzyme activity tests using the hydrolysis of p-D-nitrophenyl-${\beta}$-D-glucopyranoside (pNPGlc) as reaction model. Qualitative and quantitative electrophoresis were applied to analyze the composition of protein solution before and after the membrane separation; in addition dot blot and western blot analyses were applied to verify the presence of ${\beta}-glucosidase$ in the processed fractions. The overall results showed that the ${\beta}-glucosidase$ functional stability was preserved during the membrane operations and the removal of 20 kDa proteins allowed to increase the specific activity of the enzyme of about 52% compared to the one present in the initial fruit extract.

Functional Expression and Characterization of C-terminal Mutant of 4-Aminobutyrate Aminotransferase

  • Sung, Bo-Kyung;Cho, Jung-Jong;Kim, Young-Tae
    • BMB Reports
    • /
    • v.32 no.2
    • /
    • pp.181-188
    • /
    • 1999
  • 4-Aminobutyrate aminotransferase plays an essential role in the 4-aminobutyric acid shunt, converting 4-aminobutyrate to succinic semialdehyde. Recombinant 4-aminobutyrate aminotransferases were overexpressed as their catalytically active forms in E. coli by coproduction with thioredoxin and their solubilities were also dramatically increased. In order to study the structural and functional aspects of the C-terminal domain of brain 4-aminobutyrate aminotransferase, we have constructed a C-terminal mutant of pig brain 4-aminobutyrate aminotransferase and analyzed the functional and structural roles of C-terminal amino acids residues on the enzyme. The deletion of five amino-acid residues from C-terminus did not interfere with the kinetic parameters and functional properties of the enzyme. Also, the deletion did not affect the dimeric structure of the protein aligned along the subunit interface at neutral pH. However, the deletion of the C-terminal region of the protein changed the stability of its dimeric structure at acidic pH. The dissociation of the enzyme acidic, facilitated by the deletion of five amino acids from C-terminus, abolished the catalytic activity.

  • PDF

Variations of Enzyme Activities in Composting Process of Organic Refuse (유기성폐기물의 퇴비화에서의 효소활성도의 변화)

  • 이영옥;민봉희
    • Korean Journal of Environmental Biology
    • /
    • v.17 no.4
    • /
    • pp.493-498
    • /
    • 1999
  • To verify the usefulness of enzyme activities as a index for the stability or maturity of organic refuse composting such as grape pomace, Vmax of $\beta$-glucosidase, cellobiohydrolase and alkaline phosphatase were measured. The peak values of all measured enzymes at the initial stage of composting were probably associated with easily degradable organic matter in the grape pomace and decreased gradually. But the activities of $\beta$-glucosidase and cellobiohydrolase were increased again rapidly whereas that of alkaline phosphatase remained approximately constant after 60 composting days. These results suggest that the increase of enzyme activities during the later periods of grape pomace composting process could be used as a index for their stability.

  • PDF