• Title/Summary/Keyword: enzyme characterization

Search Result 1,412, Processing Time 0.028 seconds

Purification and Characterization of a Thermostable ${\beta}-1$,3-1,4-Glucanase from Laetiporus sulphureus var. miniatus

  • Hong, Mi-Ri;Kim, Yeong-Su;Joo, Ah-Reum;Lee, Jung-Kul;Kim, Yeong-Suk;Oh, Deok-Kun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.8
    • /
    • pp.818-822
    • /
    • 2009
  • A ${\beta}-1$,3-1,4-glucanase from the fungus Laetiporus sulphureus var. miniatus was purified as a single 26 kDa band by ammonium sulfate precipitation, HiTrap Q HP, and UNO Q ion-exchange chromatography, with a specific activity of 29 U/mg. The molecular mass of the native enzyme was 52 kDa as a dimer by gel filtration. ${\beta}-1$,3-1,4-Glucanase showed optimum activity at pH 4.0 and $75^{\circ}C$. The half-lives of the enzyme at $70^{\circ}C$ and $75^{\circ}C$ were 152 h and 22 h, respectively. The enzyme showed the highest activity for barley ${\beta}$-glucan as ${\beta}-1$,3-1,4-glucan among the tested polysaccharides and p-nitrophenyl-${\beta}$-D-glycosides with a $K_m$, of 0.67 mg/ml, a $k_{cat}$ of 13.5 $S^{-1}$ and a $k_{cat}/K_m$ of 20 mg/ml/s.

Characterization of Aspartate Aminotransferase Purified from Streptomyces fradiae (Streptomyces fradiae에서 분리된 Aspartate Aminotransferase의 특성)

  • Lee, Sang-Hee;Lee, Kye-Joon
    • Korean Journal of Microbiology
    • /
    • v.31 no.3
    • /
    • pp.237-244
    • /
    • 1993
  • Aspartate aminotransferase (ASAT) (L-aspartate : 2-oxyoglutarate, EC 2.6. 1. 1.) from Streptomyces fradiae NRRL 2702 has been purified by acetone precipitation, DEAE-cellulose, hydroxyapatite, and preparative electrophoresis (Prep cell), of which the last was the most effective step in the purification of ASAT. The molecular mass was estimated to be 54,000 dalton by SDS-PAGE and 120,000 dalton by gel filtration chromatography. Preparative isoelectric focusing of purified ASAT resulted in one polypeptide band with a pI of 4.2, showing homogeneity and indicating that the enzyme is composed of two identical subunits. The enzyme was specific for L-aspartate as an amino donor ; the $K_{m}$ values were determined to be 2.7 mM for L-aspartate, 0.7 mM for 2-oxoglutarate, 12.8 mM for L-glutamate, and 0.15 mM for oxaloacetate. The enzyme was relatively heat-stable, having maximum activity at 55.deg.C, and it had a broad pH optimum ranging from 5.5 to 8.0. The activity of the purified enzyme was not inhibited by ammonium ions. This paper reports the first purification and characterization of the aspartate aminotransferase from a species of Streptomyces.s.

  • PDF

Cultural Characterization of Bacteriolytic Bacillus subtilis SH-1 Isolated from Pusan Coastal Sea (해양에서 분리한 용균세균인 Bacillus subtilis SH-1의 배양특성)

  • 류병호;진성현
    • Journal of Food Hygiene and Safety
    • /
    • v.10 no.4
    • /
    • pp.231-237
    • /
    • 1995
  • Bacillus subtilis SH-1 have been isolated and identified from coastal sea, in Pusan, The optimal cultural characterization of Bacillus subtilis SH-1 for 속 production of bacteriolytic enzyme was determained. Bacillus subtilis SH-1 produced the bacteriolytic enzyme well in the medium consist of 1.0% glucose, 1.0% yeast extract, 1.0% NaCI, 0.02% $K_2HPO_4,\;0.002%\;MgSo_4{\cdot}7H_2O,\;0.001%\;MnSO_4{\cdot}5H_2O,\;0.0001%\;FeSO_4{\cdot}7H_2O$. The optimal medium pH, incubation temperature, and shaking tome for the highest production of the enzyme were 8.0, $30^{\circ}C$ and 28 hours respectively.

  • PDF

A New Raw-Starch-Digesting ${\alpha}$-Amylase: Production Under Solid-State Fermentation on Crude Millet and Biochemical Characterization

  • Maktouf, Sameh;Kamoun, Amel;Moulis, Claire;Remaud-Simeon, Magali;Ghribi, Dhouha;Chaabouni, Semia Ellouz
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.4
    • /
    • pp.489-498
    • /
    • 2013
  • A new Bacillus strain degrading starch, named Bacillus sp. UEB-S, was isolated from a southern Tunisian area. Amylase production using solid-state fermentation on millet, an inexpensive and available agro-resource, was investigated. Response surface methodology was applied to establish the relationship between enzyme production and four variables: inoculum size, moisture-to-millet ratio, temperature, and fermentation duration. The maximum enzyme activity recovered was 680 U/g of dry substrate when using $1.38{\times}10^9$ CFU/g as inoculation level, 5.6:1 (ml/g) as moisture ratio (86%), for 4 days of cultivation at $37^{\circ}C$, which was in perfect agreement with the predicted model value. Amylase was purified by Q-Sepharose anion-exchange and Sephacryl S-200 gel filtration chromatography with a 14-fold increase in specific activity. Its molecular mass was estimated at 130 kDa. The enzyme showed maximal activity at pH 5 and $70^{\circ}C$, and efficiently hydrolyzed starch to yield glucose and maltose as end products. The enzyme proved its efficiency for digesting raw cereal below gelatinization temperature and, hence, its potentiality to be used in industrial processes.

Isolation, Purification and Characterization of Phytase from Asperfillus sp. (Aspergillus속 균주가 생산하는 Phytase의 분리 정제 및 특성)

  • 천성숙;조영제;차원섭;이희덕;이선호
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.1
    • /
    • pp.38-45
    • /
    • 1998
  • To extract insoluble proteins and to improve funtional properties of abolished proteins, an phytase producing Aspergillus sp. SM-15 was isolated from soil. The enzyme was purified and its enzymological characteristics were investigated. Phytase production reached to maximum when the wheat bran medium containing 1% mannose, 1% yeast extract, 1% (NH4)2HPO4 and 0.2% calcium chloride was cultured for 4 days. Phytase was purified 17.1 fold and specific activity was 244.32unit/mg by a sequencial process of ammonium sulfate fraction, ion exchange chromatography and gel filtrations Pruified enzyme was confirmed as a single band by the polyacrylamide gel electro-phoresis. The molecular weight of phytase was estimated to be 46,000. The optimum pH and temperature for the phytase activity were 5.5 and 5$0^{\circ}C$. The enzyme is stable in pH 4.5~5.5, 6$0^{\circ}C$. The activity of purified enzyme was inhibited by Hg2+ whereas activited by Pb2+ and Fe2+. The activity of phytase was inhibited by the treatment with iodine. The result indicate the possible involvement of histidine at active site. Km and Vmax of the puridied phytase were 37.037mM/L and 159.87umol/min, respectively.

  • PDF

Partial Purification and Characterization of Thermostable Alkaline $\beta$-Mannanase from Bacillus sp. JB-99 Suitable for Pulp Bleaching

  • VIRUPAKSHI S.;BABU K. GlREESH;NAIK GAJANAN R.
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.689-693
    • /
    • 2005
  • Bacillus sp. JB-99, when grown in a chemically defined medium containing lactose as a carbon source, yielded 3,860 U/ml extracellular $\beta$-mannanase, which was high compared to other examined carbon sources. Among the nitrogen sources, yeast extract enhanced the enzyme activity. The enzyme production was growth-associated. The enzyme was optimally active at $65^{\circ}C$, pH 10, and had a half-life of 190 min at $65^{\circ}C$. N-Bromosuccinamide and $AgNO_3,\;CuSO_4$, and $HgCl_2$ strongly inhibited the enzyme, whereas $Ca^{2+}$ stimulated the enzyme activity. The $\alpha$-galactosidase enzyme production was not found in any of the enzyme assays.

Characterization of a Fibrinolytic Serine Protease from a Wild Mushroom, Lepista nuda

  • Kim Jun-Ho
    • Biomedical Science Letters
    • /
    • v.12 no.3
    • /
    • pp.225-231
    • /
    • 2006
  • Fibrinolytic enzyme was purified from the fruiting bodies of Lepista nuda, using DEAE-Cellulose chromatography, Phenyl Sepharose chromatography, and Mono-S column chromatography. The substance has a molecular weight of 30006.62 Da as measured by MALD-TOF mass spectrometry. The N-terminal amino acid sequence of the enzyme was Tyr-Pro-Ser-Pro-Ser-His-Gln-Thr-Ala-Val-Asn-Ala-Ile-Ile-X. The activity of the enzyme was inhibited by PMSF, indicating that the enzyme is a serine protease. No inhibition was found with E-64, pepstatin, and EDTA. It has broad substrate specificity for synthetic peptides. The enzyme was stable up to $30^{\circ}C$. The enzyme hydrolyzes both Aa and y chains of human fibrinogen but did not show any reactivity for $B{\beta}$ chain of human fibrinogen.

  • PDF

Purification and Characterization of Guar Galactomannan Degrading $\alpha$-Galactosidase from Aspergillus oryzae DR-5

    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.863-867
    • /
    • 2004
  • $\alpha$-Galactosidase from A. oryzae DR-5 was induced in the presence of melibiose, raffinose, galactose, and locust bean galactomannan. The enzyme was purified to homogeneity by precipitation with acetone followed by ion-exchange chromatography using DEAE-Sephacel. The purified enzyme showed a single band in both nondenaturing-PAGE and SDS-PAGE. The enzyme was a glycoprotein in nature by activity staining. The molecular weight of the purified enzyme was 93-95 kDa by SDS-PAGE. The enzyme exhibited the optimum pH and temperature at 4.7 and $60^\circ{C}$, respectively. $\alpha$-Galactosidase activity was strongly inhibited by $Ag^{2+}, Hg^{2+}, Cu^{2+}$, and galactose. EDTA, 1,10-phenanthraline, and PMSF did not inhibit the enzyme activity, whereas N-bromosuccinimide completely inhibited enzyme activity. Investigation by TLC showed complete hydrolysis of stachyose and raffinose in soymilk in 3 h at pH 5.0 and $50^\circ{C}$.

Purification and Characterization of Extracellular Temperature-Stable Serine Protease from Aeromonas hydrophila

  • Cho, Soo-Jin;Park, Jong-Ho;Park, Seong-Joo;Lim, Jong-Soon;Kim, Eung-Ho;Cho, Yeon-Jae;Shin, Kwang-Soo
    • Journal of Microbiology
    • /
    • v.41 no.3
    • /
    • pp.207-211
    • /
    • 2003
  • Extracellular protease, from Aeromonas hydrophila Ni 39, was purified 16.7-fold to electrophoretic homogeneity with an overall yield of 19.9%, through a purification procedure of acetone precipitation, and Q Sepharose and Sephacryl S-200 chromatographies. The isoelectric point of the enzyme was 6.0 and the molecular mass, as determined by Sephacryl S-200 HR chromatography, was found to be about 102 kDa. SDS/PAGE revealed that the enzyme consisted of two subunits, with molecular masses of 65.9 kDa. Under standard assay conditions, the apparent $K_{m}$ value of the enzyme toward casein was 0.32 mg/ml. About 90% of the proteolytic activity remained after heating at 60$^{\circ}C$ for 30 min. The highest rate of azocasein hydrolysis for the enzyme was reached at 60$^{\circ}C$, and the optimum pH of the enzyme was 9.0. The enzyme was inhibited by the serine protease inhibitor, phenylmethylsulfonyl fluoride (PMSF), by about 87.9%, but not by E64, EDTA, pepstatin or 1,10-phenanthroline. The enzyme activity was inhibited slightly by Ca$\^$2+/, Mg$\^$2+/ and Zn/supb 2+/ ions.

Purification, Characterization, and Partial Primary Sequence of a Major-Maltotriose-producing $\alpha$-Amylase, ScAmy43, from Sclerotinia sclerotiorum

  • Ben Abdelmalek-Khedher, Imen;Urdad, Maria Camino;Limam, Ferid;Schmitter, Jean Marie;Marzouki, M. Nejib;Bressollier, Philippe
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.9
    • /
    • pp.1555-1563
    • /
    • 2008
  • A novel $\alpha$-amylase ($\alpha$-1,4-$\alpha$-D-glucan glucanohydrolase, E.C. 3.2.1.1), ScAmy43, was found in the culture medium of the phytopathogenic fungus Sclerotinia sclerotiorum grown on oats flour. Purified to homogeneity, ScAmy43 appeared as a 43 kDa monomeric enzyme, as estimated by SDS-PAGE and Superdex 75 gel filtration. The MALDI peptide mass fingerprint of ScAmy43 tryptic digest as well as internal sequence analyses indicate that the enzyme has an original primary structure when compared with other fungal a-amylases. However, the sequence of the 12 N-terminal residues is homologous with those of Aspergillus awamori and Aspergillus kawachii amylases, suggesting that the new enzyme belongs to the same GH13 glycosyl hydrolase family. Assayed with soluble starch as substrate, this enzyme displayed optimal activity at pH 4 and $55^{\circ}C$ with an apparent $K_m$ value of 1.66 mg/ml and $V_{max}$ of 0.1${\mu}mol$glucose $min^{-1}$ $ml^{-1}$. ScAmy43 activity was strongly inhibited by $Cu^{2+}$, $Mn^{2+}$, and $Ba^{2+}$, moderately by $Fe^{2+}$, and was only weakly affected by $Ca^{2+}$ addition. However, since EDTA and EGTA did not inhibit ScAmy43 activity, this enzyme is probably not a metalloprotein. DTT and $\beta$-mercaptoethanol strongly increased the enzyme activity. Starting with soluble starch as substrate, the end products were mainly maltotriose, suggesting for this enzyme an endo action.