• 제목/요약/키워드: enzymatic property

검색결과 70건 처리시간 0.018초

Effects of Treatments with Two Lipolytic Enzymes on Cotton/Polyester Blend Fabrics

  • Lee, So Hee;Song, Wha Soon
    • 한국의류학회지
    • /
    • 제37권8호
    • /
    • pp.1107-1116
    • /
    • 2013
  • This study examined the use of cutinase and lipase to process cotton/polyester blend fabric. Optimum treatment conditions for cutinase and lipase were investigated for cotton/polyester blend fabric. The properties of enzyme-treated fabrics were evaluated and compared in optimal treatment conditions. In addition, the possibility to provide an enzymatic finishing on blend fabrics using mixed enzymes in a two-step process were studied. The weight loss of cotton/polyester blend fabrics with Triton X-100 was 0.8% and the dyeing property of blend fabrics with calcium chloride increased by a factor of 1.2. The use of two enzymes in combination with cutinase and lipase in the presence of auxiliaries resulted in a cotton/polyester blend fabric weight loss of 0.8%. In addition, the dyeing properties of cotton/polyester blend fabrics improved by a factor of 1.5 and the moisture regain of cotton/polyester blend fabrics improved by a factor of 1.16. However, no marked loss was observed in tensile strength. The surface morphology of cotton/polyester blend fabrics is modified through a two-enzyme treatment. The treatment of cotton/polyester blend fabrics with cutinase and lipase maintains cotton strength and improves the moisture regain of polyester fabrics.

Conversion Characteristics of Chemical Constituents in Liriodendron tulipifera and Their Influences on Biomass Recalcitrance during Acid-Catalyzed Organosolv Pretreatment

  • Ki-Seob GWAK;JunHo SHIN;Chae-Hwi YOON;In-Gyu CHOI
    • Journal of the Korean Wood Science and Technology
    • /
    • 제52권2호
    • /
    • pp.101-117
    • /
    • 2024
  • The conversion characteristics of the major components of Liriodendron tulipifera were investigated during acid-catalyzed organosolv pretreatment. Glucan in L. tulipifera was slowly hydrolyzed, whereas xylan was rapidly hydrolyzed. Simultaneous hydrolysis and degradation of xylan and lignin occurred; however, after complete hydrolysis of xylan at higher temperatures, lignin remained and was not completely degraded or solubilized. These conversion characteristics influence the structural properties of glucan in L. tulipifera. Critical hydrolysis of the crystalline regions in glucan occurred along with rapid hydrolysis of the amorphous regions in xylan and lignin. Breakdown of internal lignin and xylan bonds, along with solubilization of lignin, causes destruction of the lignin-carbohydrate complex. Over a temperature of 160℃, the lignin that remained was coalesced, migrated, and re-deposited on the surface of pretreated solid residue, resulting in a drastic increase in the number and content of lignin droplets. From the results, the characteristic conversions of each constituent and the changes in the structural properties in L. tulipifera effectively improved enzymatic hydrolysis in the range of 140℃-150℃. Therefore, it can be concluded that significant changes in the biomass recalcitrance of L. tulipifera occurred during organosolv pretreatment.

다시마의 효과적 추출을 위한 종합적인 추출방법의 개발 (Development of Combined Method for Extraction of Sea Tangle)

  • 김우정;이정근;장영상
    • 한국식품과학회지
    • /
    • 제26권1호
    • /
    • pp.51-56
    • /
    • 1994
  • 다시마를 다당류 분해효소인 Viscozyme, Celluclast, Ultrazyme을 사용하여 분해할 경우 Viscozyme과 Celluclast를 1 : 1로 혼합한 후 분해하는 것이 고형분 및 단백질 수율 그리고 상징액율면에서 가장 적절한 것으로 나타났으며 이때 고형분 수율은 34.5%였다. 염 또는 당의 농도를 $0.5{\sim}3.0%$범위로 하고 $100^{\circ}C$에서 2시간 가열하였을 때 고형분 농도 및 수율, 상징액율은 SHMP, sucrose, NaCl 및 EDTA-2Na순으로 높았으며 특히 EDTA-2Na를 2.5% 첨가시 고형분 수율이 63.1%까지 도달하여 NaCl과 sucrose를 첨가하였을 때보다 $30{\sim}80%$의 수율향상이 있었다. 관능적 성질은 열수추출한 것보다 효소처리 한 후 NaCl 또는 sucrose를 첨가하여 추출한 것이 전체적인 맛과 해조류 맛의 강도가 뚜렷하게 높았다.

  • PDF

Effects of enzymatic hydrolysis of buckwheat protein on antigenicity and allergenicity

  • Sung, Dong-Eun;Lee, Jeongok;Han, Youngshin;Shon, Dong-Hwa;Ahn, Kangmo;Oh, Sangsuk;Do, Jeong-Ryong
    • Nutrition Research and Practice
    • /
    • 제8권3호
    • /
    • pp.278-283
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: Due to its beneficial health effects, use of buckwheat has shown a continuous increase, and concerns regarding the allergic property of buckwheat have also increased. This study was conducted for evaluation of the hydrolytic effects of seven commercial proteases on buckwheat allergens and its allergenicity. MATERIALS/METHODS: Extracted buckwheat protein was hydrolyzed by seven proteolytic enzymes at individual optimum temperature and pH for four hours. Analysis was then performed using SDS-PAGE, immunoblotting, and competitive inhibition ELISA (ciELISA) with rabbit antiserum to buckwheat protein, and direct ELISA with pooled serum of 21 buckwheat-sensitive patients. RESULTS: Alkaline protease, classified as serine peptidase, was most effective in reducing allergenicity of buckwheat protein. It caused decomposition of the whole buckwheat protein, as shown on SDS-PAGE, and results of immunoblotting showed that the rabbit antiserum to buckwheat protein no longer recognized it as an antigen. Allergenicity showed a decrease of more than 50% when pooled serum of patients was used in ELISA. Two proteolytic enzymes from Aspergillus sp. could not hydrolyze buckwheat allergens effectively, and the allergenicity even appeared to increase. CONCLUSIONS: Serine-type peptidases appeared to show a relatively effective reduction of buckwheat allergenicity. However, the antigenicity measured using rabbit antiserum did not correspond to the allergenicity measured using sera from human patients. Production of less allergenic buckwheat protein may be possible using enzymatic hydrolysis.

양모.폴리에스터 혼방직물의 효소가공 시 활성제 복합사용의 효과 (Effects of Mixed Activators on Enzymatic Activation for Wool.polyester Blend Fabrics)

  • 송현주;송화순
    • 한국의류학회지
    • /
    • 제32권9호
    • /
    • pp.1461-1466
    • /
    • 2008
  • This study provides effects of mixed activators on enzymatic activation and determines optimum mixture ratio for enzymatic treatment. Wool 80% and polyester 20% blend fabric and papain from carica papaya are used in this experiment. L-cysteine and sodium sulfite are used as activators for papain treatment process. The treatment condition is pH 7.5, $70^{\circ}$, papain concentration 10%(o.w.f), 60 minutes. L-cysteine and sodium sulfite are added in enzyme solution with various concentrations($0{\sim}50mM$). The optimum treatment condition is determined by measuring weight loss, tensile strength, whiteness, water contact angle(WCA), dyeability and surface micrographs. The results are as follow; The optimum mixture ratio of activators is L-cysteine 2mM and sodium sulfite 10mM. Mixed activators assists in improving the activation of papain. WCA of papain treated fabrics is decreased since papain treatment with activator mixture makes wool polyester blend fabrics more hydrophilic. Dyeing property of papain-treated fabrics more improves by the treatment with mixed activators than with single activator. It means that this method can save time and lower cost. After papain treatment in the presence of mixed activator, the surface of fabrics is modified. The surface of wool fiber shows to be descaled and hydrolyzed, and that of polyester fiber shows to be cracked.

파파인 가공한 양모/폴리에스터 혼방직물의 정련 및 염색성 (Dyeing Properties and Scouring of Wool/Polyester Blend Fabrics Using Papain from Carica Papaya)

  • 송현주;김혜림;송화순
    • 한국의류학회지
    • /
    • 제33권2호
    • /
    • pp.213-221
    • /
    • 2009
  • This study provides the optimum papain treatment method and its effect on wool/polyester blend fabrics. The enzymatic treatment condition is optimized depending on its pH level, temperature, concentration of enzyme, treatment time and concentration of activators. The characteristics of samples treated with the papain are measured using weight loss, tensile strength, whiteness, WCA, dyeing property and surface micrographs. The results are described as follows: According to measuring weight loss, tensile strength and whiteness, a pH level of 7.5, $70^{\circ}C$, 10% papain(o.w.f.) and 60minutes of treatment time are optimized for papain treatment. L-cysteine and sodium sulfite are able to activate the papain. The optimum concentrations of them are 10mM and 50mM respectively. The WCA of fabrics is decreased since papain treatment makes wool/polyester blend fabrics more hydrophilic. Scouring with papain treatment improves whiteness and dyeing property of fabrics. The dyeing property of papain-treated fabrics is enhanced simply by a single step dyeing process using a basic dye. The surface of wool treated with papain in the presence of L-cysteine shows to be descaled. The surface of wool fibers in the presence of sodium sulfite, however, shows it is hydrolyzed evenly instead of being descaled. The surface of papain treated polyester fibers shows cracks and voids.

Physicochemical Property Changes of Sweet Potato Starch by Ultra Fine Pulverization

  • Kim, Hee-Sun;Park, Hye-Young;Han, Gwi-Jung;Kim, Myung-Hwan
    • 산업식품공학
    • /
    • 제15권2호
    • /
    • pp.169-174
    • /
    • 2011
  • This study was performed to analyze the effects of ultra fine pulverization (UFP) on the physicochemical properties of sweet potato starch (SPS). The average diameter and specific surface area of the SPS was decreased from 22.94 to 10.25 $\mu$m and from 0.879 to 1.909 $m^2$ /g throughout UFP, respectively, and the damaged starch content was increased from 13.7 to 99.2%. The pulverized sweet potato starch (PSPS) had higher swelling power, solubility, and transmittance values than the SPS. X-ray diffractograms revealed that the SPS had a C-type pattern, which disappeared in PSPS. The rapid visco analysis (RVA) characteristics, peak viscosity, break down, and set back of SPS ceased to exist in PSPS. According to differential scanning calorimetry (DSC) curves, the peak temperature ($T_p$) and gelatinization enthalpy ($\Delta$E) of SPS were $71.95^{\circ}C$ and 10.40 J/g, respectively, while these remained undetected in PSPS. The enzymatic digestibilities of SPS and PSPS were 61.7 and 84.7%, respectively.

탄소섬유 토우의 전처리 효과와 비효소적 포도당 센싱 성능 평가 (Evaluation of Pretreatment Effect and Non-enzymatic Glucose Sensing Performance of Carbon Fibers Tow Electrode)

  • 송민정
    • Korean Chemical Engineering Research
    • /
    • 제62권1호
    • /
    • pp.13-18
    • /
    • 2024
  • 웨어러블 디바이스용 유연 전극 소재 개발을 위해 탄소섬유 토우(carbon fibers tow)의 전처리에 따른 전기화학적 특성을 조사하고, 이를 활용하여 포도당을 타겟으로 전기화학적 비효소 센서를 제작하였다. 탄소섬유 토우는 탈사이징(desizing)과 활성화(activation) 공정을 통해 전처리 되었으며, 활성화는 화학적 산화와 전기화학적 산화의 두 가지 방법으로 이루어졌다. 전처리된 샘플은 주사전자 현미경(SEM)을 이용하여 표면 분석되었으며, 전기화학적 특성 및 센싱성능 분석은 시간대전류법와 순환전압 전류법, 전기화학 임피던스 분석법을 이용하여 수행되었다. 탄소섬유 토우는 전처리를 통해 감소된 Ret와 ΔEp, 증가된 Ip 등 향상된 전기화학적 특성을 보였으며, 두 활성화 방법에서는 유사한 전기화학적 특성이 얻어졌다. 본 연구에서는 전기화학센서 적용을 위해 전기화학적으로 활성화된 탄소섬유 토우를 최종 전극 물질로 선정하였다. 이 전극을 기반으로 제작된 비효소적 포도당 검출 센서는 0.09899~3.754 mM과 3.754~50 mM의 선형 구간에서 각각 0.744 mA/mM과 0.330 mA/mM 정도의 향상된 감도를 보였다. 본 연구를 통해 탄소섬유 토우의 전극 소재로서 사용 가능성을 확인했으며, 고성능 유연 전극 소재 개발에 기초 연구로 활용 가능할 것으로 기대된다.

Pasting Properties of Crude ${\beta}-Glucan$ from Spent Brewer's Yeast on Wheat Flour and Starch

  • Yoo, Moon-Sik;Lee, Young-Tack
    • Food Science and Biotechnology
    • /
    • 제16권3호
    • /
    • pp.485-488
    • /
    • 2007
  • Plentiful amount of spent yeast has been produced as a by-product from breweries. ${\beta}-Glucan$ was prepared from the spent brewer's yeast in a crude form with hot water extraction and subsequent enzymatic treatment. The crude ${\beta}-glucan$ preparation consisted of mainly glucan (53% of total wt), containing approximately 35% ${\beta}-glucan$ content of total weight. The effects of crude ${\beta}-glucan$ substitution (1-9%) on pasting properties of wheat flour and starch were determined using a Rapid Visco-Analyzer (RVA). Incorporation of yeast ${\beta}-glucan$ into wheat flour and starch significantly decreased peak and [mal viscosities, but slightly increased setback viscosity. The setback viscosity was considerably higher in starch/${\beta}-glucan$ suspension than in flour/${\beta}-glucan$ suspension. It was suggested that preparation of yeast ${\beta}-glucan$ into aqueous dispersion might affect pasting behaviors of wheat flour and starch.

Bleaching of Hardwood Kraft Pulp by Xylanase Pretreatment

  • Cho, Nam-Seok
    • Journal of the Korean Wood Science and Technology
    • /
    • 제27권4호
    • /
    • pp.65-71
    • /
    • 1999
  • This study was carried out to investigate the effect of xylanase pretreatment of the unbleached hardwood kraft pulp during the conventional Chlorine-Extraction- Hypochlorite (CEH) bleaching on pulp property. Optimum bleaching condition was evaluated by using Novozym produced from the fungus Humicola insolens. Also the effect of chelating agent prior to enzyme treatment was analyzed. The kappa number of enzymatic bleached pulp at the enzyme charge 10 IU/ml was slightly similar to that of bleached pulp without enzyme. By enzyme treatment, the chlorine charge in conventional CEH bleaching process of hardwood KP could be reduced by 17%, while no adverse effect on pulp yield and strength was. The optimum condition for enzyme pretreatment was 10 IU/ml xylanase charge, 3 to 4 hrs treatment, and 2% pulp consistency. In sugar composition in the enzyme pretreated pulp, arabinose and mannose were not much different, but more xylose was retained. This high content of hemicellulose in pulp seems to play an important role in pulp properties. The pulp pretreatment by chelating agent prior to enzyme treatment could improve the enzyme activity and enhance the bleaching effect at 0.2% diethylenetriamine pentaacetic acid (DTPA) charges.

  • PDF