DOI QR코드

DOI QR Code

Conversion Characteristics of Chemical Constituents in Liriodendron tulipifera and Their Influences on Biomass Recalcitrance during Acid-Catalyzed Organosolv Pretreatment

  • Ki-Seob GWAK (Advanced Materials R&D Team, R&D Institute, Moorim P&P Co., Ltd.) ;
  • JunHo SHIN (Department of Agriculture, Forestry, and Bioresources, College of Agriculture and Life Sciences, Seoul National University) ;
  • Chae-Hwi YOON (Department of Agriculture, Forestry, and Bioresources, College of Agriculture and Life Sciences, Seoul National University) ;
  • In-Gyu CHOI (Department of Agriculture, Forestry, and Bioresources, College of Agriculture and Life Sciences, Seoul National University)
  • Received : 2023.11.20
  • Accepted : 2024.01.24
  • Published : 2024.03.25

Abstract

The conversion characteristics of the major components of Liriodendron tulipifera were investigated during acid-catalyzed organosolv pretreatment. Glucan in L. tulipifera was slowly hydrolyzed, whereas xylan was rapidly hydrolyzed. Simultaneous hydrolysis and degradation of xylan and lignin occurred; however, after complete hydrolysis of xylan at higher temperatures, lignin remained and was not completely degraded or solubilized. These conversion characteristics influence the structural properties of glucan in L. tulipifera. Critical hydrolysis of the crystalline regions in glucan occurred along with rapid hydrolysis of the amorphous regions in xylan and lignin. Breakdown of internal lignin and xylan bonds, along with solubilization of lignin, causes destruction of the lignin-carbohydrate complex. Over a temperature of 160℃, the lignin that remained was coalesced, migrated, and re-deposited on the surface of pretreated solid residue, resulting in a drastic increase in the number and content of lignin droplets. From the results, the characteristic conversions of each constituent and the changes in the structural properties in L. tulipifera effectively improved enzymatic hydrolysis in the range of 140℃-150℃. Therefore, it can be concluded that significant changes in the biomass recalcitrance of L. tulipifera occurred during organosolv pretreatment.

Keywords

Acknowledgement

This study was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIT) (No. 2021M3H4A3A02086904).

References

  1. Bang, J., Kim, J., Kim, Y., Oh, J.K., Yeo, H., Kwak, H.W. 2022. Preparation and characterization of hydrophobic coatings from carnauba wax/lignin blends. Journal of the Korean Wood Science and Technology 50(3): 149-158.
  2. Chum, H.L., Johnson, D.K., Black, S.K., Overend, R.P. 1990. Pretreatment-catalyst effects and the combined severity parameter. Applied Biochemistry and Biotechnology 24(1): 1-14.
  3. da Costa Sousa, L., Chundawat, S.P.S., Balan, V., Dale, B.E. 2009. 'Cradle-to-grave' assessment of existing lignocellulose pretreatment technologies. Current Opinion in Biotechnology 20(3): 339-347.
  4. Donohoe, B.S., Decker, S.R., Tucker, M.P., Himmel, M.E., Vinzant, T.B. 2008. Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment. Biotechnology and Bioengineering 101(5): 913-925.
  5. Fatriasari, W., Nurhamzah, F., Raniya, R., Permana Budi Laksana, R., Anita, S.H., Iswanto, A.H., Hermiati, E. 2020. Enzymatic hydrolysis performance of biomass by the addition of a lignin based biosurfactant. Journal of the Korean Wood Science and Technology 48(5): 651-665. https://doi.org/10.5658/WOOD.2020.48.5.651
  6. Gwak, K.S., Yoon, C.H., Kim, J.C., Kim, J.H., Cho, Y.M., Choi, I.G. 2022. Conversion of glucose and xylose to 5-hydroxymethyl furfural, furfural, and levulinic acid using ethanol organosolv pretreatment under various conditions. Journal of the Korean Wood Science and Technology 50(6): 475-489.
  7. Hallac, B.B., Sannigrahi, P., Pu, Y., Ray, M., Murphy, R.J., Ragauskas, A.J., 2010. Effect of ethanol organosolv pretreatment on enzymatic hydrolysis of Buddleja davidii stem biomass. Industrial & Engineering Chemistry Research 49(4): 1467-1472.
  8. Himmel, M.E. 2008. Biomass Recalcitrance: Deconstructing the Plant Cell Wall for Bioenergy. Blackwell, Hoboken, NJ, USA.
  9. Holtzapple, M.T., Humphrey, A.E. 1984. The effect of organosolv pretreatment on the enzymatic hydrolysis of poplar. Biotechnology and Bioengineering 26(7): 670-676.
  10. Hwang, U.T., Bae, J., Lee, T., Hwang, S.Y., Kim, J.C., Park, J., Choi, I.G., Kwak, H.W., Hwang, S.W., Yeo, H. 2021. Analysis of carbonization behavior of hydrochar produced by hydrothermal carbonization of lignin and development of a prediction model for carbonization degree using near-infrared spectroscopy. Journal of the Korean Wood Science and Technology 49(3): 213-225.
  11. Iswanto, A.H., Tarigan, F.O., Susilowati, A., Darwis, A., Fatriasari, W. 2021. Wood chemical compositions of raru species originating from Central Tapanuli, North Sumatra, Indonesia: Effect of differences in wood species and log positions. Journal of the Korean Wood Science and Technology 49(5): 416-429.
  12. Jung, J.Y., Ha, S.Y., Yang, J.K. 2022. Effect of steam explosion condition on the improvement of physicochemical properties of pine chips for feed additives. Journal of the Korean Wood Science and Technology 50(1): 59-67.
  13. Kim, M.J., Lee, S.J., Kim, S., Yang, M.S., Son, D.W., Kim, C.K. 2023. Study on the combustion characteristics of tulip tree (Liriodendron tulipifera) for use as interior building materials. Journal of the Korean Wood Science and Technology 51(5): 410-418.
  14. Koo, B.W., Kim, H.Y., Park, N., Lee, S.M., Yeo, H., Choi, I.G. 2011. Organosolv pretreatment of Liriodendron tulipifera and simultaneous saccharification and fermentation for bioethanol production. Biomass and Bioenergy 35(5): 1833-1840.
  15. Maulana, M.I., Murda, R.A., Purusatama, B.D., Sari, R.K., Nawawi, D.S., Nikmatin, S., Hidayat, W., Lee, S.H., Febrianto, F., Kim, N.H. 2021. Effect of alkali-washing at different concentration on the chemical compositions of the steam treated bamboo strands. Journal of the Korean Wood Science and Technology 49(1): 14-22.
  16. Montane, D., Farriol, X., Salvado, J., Jollez, P., Chornet, E. 1998. Fractionation of wheat straw by steam-explosion pretreatment and alkali delignification. Cellulose pulp and byproducts from hemicellulose and lignin. Journal of Wood Chemistry and Technology 18(2): 171-191.
  17. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M., Ladisch, M. 2005. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology 96(6): 673-686.
  18. Nair, L.G., Agrawal, K., Verma, P. 2023. Organosolv pretreatment: An in-depth purview of mechanics of the system. Bioresources and Bioprocessing 10(1): 50.
  19. Overend, R.P., Chornet, E. 1987. Fractionation of lignocellulosics by steam-aqueous pretreatments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 321(1561): 523-536.
  20. Pari, G., Efiyanti, L., Darmawan, S., Saputra, N.A., Hendra, D., Adam, J., Inkriwang, A., Effendi, R. 2023. Initial ignition time and calorific value enhancement of briquette with added pine resin. Journal of the Korean Wood Science and Technology 51(3): 207-221.
  21. Park, S., Baker, J.O., Himmel, M.E., Parilla, P.A., Johnson, D.K. 2010. Cellulose crystallinity index: Measurement techniques and their impact on interpreting cellulase performance. Biotechnology for Biofuels and Bioproducts 3: 10.
  22. Pedersen, M., Meyer, A.S. 2010. Lignocellulose pretreatment severity: Relating pH to biomatrix opening. New Biotechnology 27(6): 739-750.
  23. Ruland, W. 1961. X-ray determination of crystallinity and diffuse disorder scattering. Acta Crystallographica 14(11): 1180-1185.
  24. Salvi, D.A., Aita, G.M., Robert, D., Bazan, V. 2010. Dilute ammonia pretreatment of sorghum and its effectiveness on enzyme hydrolysis and ethanol fermentation. Applied Biochemistry and Biotechnology 161(1-8): 67-74.
  25. Sasaki, M., Fang, Z., Fukushima, Y., Adschiri, T., Arai, K. 2000. Dissolution and hydrolysis of cellulose in subcritical and supercritical water. Industrial & Engineering Chemistry Research 39(8): 2883-2890.
  26. Segal, L., Creely, J., Martin, A., Conrad, C. 1959. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal 29(10): 786-794.
  27. Segal, L., Loeb, L., Creely, J. 1954. An X ray study of the decomposition product of the ethylamine cellulose complex. Journal of Polymer Science 13(69): 193-206.
  28. Silverstein, R.A., Chen, Y., Sharma-Shivappa, R.R., Boyette, M.D., Osborne, J. 2007. A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresource Technology 98(16): 3000-3011.
  29. Sjostrom, E. 1993. Wood Chemistry: Fundamentals and Applications. Academic Press, Cambridge, MA, USA.
  30. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D. 2008a. Determination of Sugars, Byproducts, and Degradation Products in Liquid Fraction Process Samples. National Renewable Energy Laboratory, Golden, CO, USA.
  31. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D. 2008b. Determination of Structural Carbohydrates and Lignin in Biomass. National Renewable Energy Laboratory, Golden, CO, USA.
  32. Sun, Y., Cheng, J. 2002. Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresource Technology 83(1): 1-11.
  33. United States Department of Energy. 2006. Breaking the Biological Barriers to Cellulosic Ethanol: A Joint Research Agenda. United States Department of Energy, Washington, DC, USA.
  34. Viridiana, F.L., Clarissa, P., Joice, R., Ana, F., Stefano, M., Guido, Z. 2010. An approach to the utilisation of CO2 as impregnating agent in steam pretreatment of sugar cane bagasse and leaves for ethanol production. Biotechnology for Biofuels 3: 7-14.
  35. Zendrato, H.M., Devi, Y.S., Masruchin, N., Wistara, N.J. 2021. Soda pulping of torch ginger stem: Promising source of nonwood-based cellulose. Journal of the Korean Wood Science and Technology 49(4): 287-298.