• 제목/요약/키워드: enzymatic properties.

검색결과 596건 처리시간 0.026초

호알칼리성 Bacillus sp.가 생산하는 Cyclodextrin Glycosyltransferase의 효소적 특성 (Enzymatic Properties of Cyclodextrin Glycosyltransferase from Alkalophilic Bacillus sp. YC-335)

  • 정용준;정명호;유주현
    • 한국식품과학회지
    • /
    • 제23권1호
    • /
    • pp.93-97
    • /
    • 1991
  • 호알칼리성 Bacillus sp. YC-335가 생산하는 CGTase의 효소학적 특성 및 작용반응을 살펴보았다. ${\alpha}-CD,\;{\beta}-CD$${\gamma}-CD$로부터 glucosyl residues를 설탕으로 전이시키는 반응에 대한 효소의 최대 반응속도, Vmax 값은 각각 $16.13,\;21.8,\;9.8{\mu}moles glucose/min/mg\;protein$이었으며 Km 값은 각각 1.68, 0.33, 0.37 mM이었다. 효소의 전분 가수분해활성은 여러 당류에 의해 촉진되었으며 특히 전분 가수분해 산물인 maltose와 glucose에 의한 효과가 가장 좋았다. 이 효소는 ${\beta}CD$에 의해 효소의 전분 분해활성이 저해되었으며 비경쟁적 저해형식을 보였다. 또한 전분으로부터 효소작용에 의해 생성된 산물을 총당량법 및 HPLC 분석을 통해 조사한 결과 이 효소는 cyclization 작용 뿐만 아니라 transglycosylation 작용과 disproportionation 작용을 가지는 것으로 확인하였다.

  • PDF

Characterization of Biochemical Properties of Feline Foamy Virus Integrase

  • Lee, Dong-Hyun;Hyun, U-Sok;Kim, Ji-Ye;Shin, Cha-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권6호
    • /
    • pp.968-973
    • /
    • 2010
  • In order to study its biochemical properties, the integrase (IN) protein of feline foamy virus (FFV) was overexpressed in Escherichia coli, purified by two-step chromatography, (Talon column and heparin column), and characterized in biochemical aspects. For the three enzymatic reactions of the 3'-processing, strand transfer, and disintegration activities, the $Mn^{2+}$ ion was essentially required as a cofactor. Interestingly, $Co^{2+}$ and $Zn^{2+}$ ions were found to act as effective cofactors, whereas other transition elements such as $Ni^{2+}$, $Cu^{2+}$, $La^{3+}$, $Y^{3+}$, $Cd^{2+}$, $Li^{1+}$, $Ba^{2+}$, $Sr^{2+}$, and $V^{3+}$ were not. Regarding the substrate specificity, FFV IN has low substrate specificities as it cleaved in a significant level prototype foamy virus (PFV) U5 LTR substrate as well as FFV U5 LTR substrate, whereas PFV IN did not. Finally, the 3'-processing activity was observed in high concentrations of several solvents such as CHAPS, glycerol, Tween 20, and Triton X-100, which are generally used for dissolution of chemicals in inhibitor screening. Therefore, in this first report showing its biochemical properties, FFV IN is proposed to have low specificities on the use of cofactor and substrate for enzymatic reaction as compared with other retroviral INs.

산화양모의 효소처리에 의한 양모섬유의 개질(제1보)-화학적 성질의 변화- (Modification of Oxidation Wool Treated with Protease(Part I)-Changes of chemical properties)

  • 김영리;유효선
    • 한국의류학회지
    • /
    • 제22권7호
    • /
    • pp.843-850
    • /
    • 1998
  • The purpose of this study is the investigation of chemical properties of wool treated with oxidants and protease at low temperature. The chemical degradation of the fibers were investigated by measuring $\alpha$-amimo acid contents and FT-IR analysis. In addition, urea-hydrogensulfite solubility was measured to compare to the oxidation and protease treated wool. The results were as follows. 1) By the oxidation of wool, cystine is oxidised to cysteic acid by way of the intermediate oxides, cystine-S-monooxide and cystine-S-dioxide, in the case hydrolysis catalysed by the protease catalyse. Also, $\alpha$-amimo acid contents is increased, and urea-hydrogensulfite solubility was lower than that of untreated wool. This chemical degradation of wool was occurred due to oxidate hydrolysis in the order of permonosulfate>dichloroisocyanuric acid$\geq$chlorine. 2) The chemical degradation of wool was accelerated by the protease treatment of oxidized wool. Oxidation of wool is considered to make the fiber more susceptibled to enzymatic attact by opening disulphide bond within wool. Enzymatic attact was effectively directed to the wool oxidised by permonosulfate.

  • PDF

Antioxidant properties of tidal pool microalgae, Halochlorococcum porphyrae and Oltamannsiellopsis unicellularis from Jeju Island, Korea

  • Lee, Seung-Hong;Lee, Joon-Baek;Lee, Ki-Wan;Jeon, You-Jin
    • ALGAE
    • /
    • 제25권1호
    • /
    • pp.45-56
    • /
    • 2010
  • In this study, we assessed the antioxidant properties of tidal pool microalgae, Halochlorococcum porphyrae and Oltamannsiellopsis unicellularis, from Jeju Island, Korea. Specifically, the antioxidant activity of fractions isolated from 80% methanol extract, and digests produced from five proteases and carbohydrases, were investigated. Almost all the fractions and the 80% methanol extract exhibited higher effects on 1,1-Diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging. The ethyl acetate fraction showed the highest superoxide anion scavenging activity, while both n-hexane and chloroform fractions exhibited higher $H_2O_2$ scavenging activity. Among the enzymatic digests from H. porphyrae and O. unicellularis, all the digests exhibited remarkable DPPH scavenging activities. In nitric oxide inhibition, all the digests recorded significantly higher effects than those of the commercial antioxidants (p < 0.05). Flavozyme and Neutrase digests from H. porphyrae, and Termamyl and Alcalase digests from O. unicellularis, showed significant effects in metal chelating. Lipid peroxidation was significantly inhibited in the ethyl acetate fraction, in the Celluclast and Protamex digests from H. porphyrae, and in the chloroform fraction from O. unicellularis. These findings suggest that the two tidal pool microalgae tested in this study are rich in potential antioxidative compounds, the specific properties of which can be considered for use in the food and pharmaceutical industries.

Enzymatic and Non-enzymatic Degradation of Poly (3-Hydroxybutyrate-co-3-Hydroxyvalerate) Copolyesters Produced by Alcaligenes sp. MT-16

  • Choi Gang Guk;Kim Hyung Woo;Rhee Young Ha
    • Journal of Microbiology
    • /
    • 제42권4호
    • /
    • pp.346-352
    • /
    • 2004
  • Poly(3-Hydroxybutyrate-co­3-Hydroxyvalerate), poly(3HB-co-3HV), copolyesters with a variety of 3HV contents (ranging from 17 to $60\;mol\%$) were produced by Alcaligenes sp. MT-16 grown on a medium containing glucose and levulinic acid in various ratios, and the effects of hydrophilicity and crystallinity on the degradability of the copolyesters were evaluated. Measurements of thermo-mechanical pro­perties and Fourier-transform infrared spectroscopy in the attenuated total reflectance revealed that the hydrophilicity and crystallinity of poly(3HB-co-3HV) copolyesters decreased as 3HV content in the copolyester increased. When the prepared copolyester film samples were non-enzymatically hydrolysed in 0.01 N NaOH solution, the weights of all samples were found to have undergone no changes over a period of 20 weeks. In contrast, the copolyester film samples were degraded by the action of extra­cellular polyhydroxybutyrate depolymerase from Emericellopsis minima W2. The overall rate of weight loss was higher in the films containing higher amounts of 3HV, suggesting that the enzymatic degra­dation of the copolyester is more dependent on the crystallinity of the copolyester than on its hydro­philicity. Our results suggest that the degradability characteristics of poly(3HB-co-3HV) copolyesters, as well as their thermo-mechanical properties, are greatly influenced by the 3HV content in the copoly­esters.

Comparison of the Cell Surface Barrier and Enzymatic Modification System in Brevibacterium flavum and B. Lactofermentum

  • Jang Ki-Hyo;Britz Margaret L.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제10권3호
    • /
    • pp.225-229
    • /
    • 2005
  • To investigate impediments to plasmid transformation in Brevibacterium flavum BF4 and B. lactofermentum BL1, cell surface barriers were determined by measuring growth inhibition whilst enzymatic barriers were determined by comparing DNA methylation properties. B. lactofermentum was more sensitive to growth inhibition by glycine than B. flavum. Release of cellular proteins during sonication was more rapid for B. lactofermentum than for B. flavum. Plasmid DNA (pCSL 17) isolated from B. flavum transformed recipient $McrBC^+$ strains of Escherichia coli with lower efficiency than $McrBC^-$. McrBC digestion of this DNA confirmed that B. flavum contain methylated cytidines in the target sequence of McrBc sequences but B. lactofermentum contained a different methylation pattern. DNA derived from the B. lactofermentum transformed recipient $EcoKR^+$ strains of E. coli with lower efficiency than $EcoKR^-$, indicating the presence of methylated adenosines in the target sequence of EcoK sequences. The present data describe the differences in the physical and enzymatic barriers between two species of corynebacteria and also provide some insight into the successful foreign gene expression in corynebacteria.

Biofunctional Properties of Enzymatic Squid Meat Hydrolysate

  • Choi, Joon Hyuk;Kim, Kyung-Tae;Kim, Sang Moo
    • Preventive Nutrition and Food Science
    • /
    • 제20권1호
    • /
    • pp.67-72
    • /
    • 2015
  • Squid is one of the most important commercial fishes in the world and is mainly utilized or consumed as sliced raw fish or as processed products. The biofunctional activities of enzymatic squid meat hydrolysate were determined to develop value-added products. Enzymatic squid hydrolysate manufactured by Alcalase effectively quenched 1,1-diphenyl-2-picrylhydrazyl radical, hydroxyl radical, and hydrogen peroxide radical with $IC_{50}$ values of 311, 3,410, and $111.5{\mu}g/mL$, respectively. Angiotensin I-converting enzyme inhibitory activity of squid hydrolysate was strong with an $IC_{50}$ value of $145.1{\mu}g/mL$, while tyrosinase inhibitory activity with an $IC_{50}$ value of 4.72 mg/mL was moderately low. Overall, squid meat hydrolysate can be used in food or cosmetic industries as a bioactive ingredient and possibly be used in the manufacture of seasoning, bread, noodle, or cosmetics.

Improved Functional Characteristics of Whey Protein Hydrolysates in Food Industry

  • Jeewanthi, Renda Kankanamge Chaturika;Lee, Na-Kyoung;Paik, Hyun-Dong
    • 한국축산식품학회지
    • /
    • 제35권3호
    • /
    • pp.350-359
    • /
    • 2015
  • This review focuses on the enhanced functional characteristics of enzymatic hydrolysates of whey proteins (WPHs) in food applications compared to intact whey proteins (WPs). WPs are applied in foods as whey protein concentrates (WPCs), whey protein isolates (WPIs), and WPHs. WPs are byproducts of cheese production, used in a wide range of food applications due to their nutritional validity, functional activities, and cost effectiveness. Enzymatic hydrolysis yields improved functional and nutritional benefits in contrast to heat denaturation or native applications. WPHs improve solubility over a wide range of pH, create viscosity through water binding, and promote cohesion, adhesion, and elasticity. WPHs form stronger but more flexible edible films than WPC or WPI. WPHs enhance emulsification, bind fat, and facilitate whipping, compared to intact WPs. Extensive hydrolyzed WPHs with proper heat applications are the best emulsifiers and addition of polysaccharides improves the emulsification ability of WPHs. Also, WPHs improve the sensorial properties like color, flavor, and texture but impart a bitter taste in case where extensive hydrolysis (degree of hydrolysis greater than 8%). It is important to consider the type of enzyme, hydrolysis conditions, and WPHs production method based on the nature of food application.