Browse > Article

Comparison of the Cell Surface Barrier and Enzymatic Modification System in Brevibacterium flavum and B. Lactofermentum  

Jang Ki-Hyo (Department of Food and Nutrition, Samcheok National University)
Britz Margaret L. (School of Agriculture and Food Systems, Gilbert Chandler Campus, The University of Melbourne)
Publication Information
Biotechnology and Bioprocess Engineering:BBE / v.10, no.3, 2005 , pp. 225-229 More about this Journal
Abstract
To investigate impediments to plasmid transformation in Brevibacterium flavum BF4 and B. lactofermentum BL1, cell surface barriers were determined by measuring growth inhibition whilst enzymatic barriers were determined by comparing DNA methylation properties. B. lactofermentum was more sensitive to growth inhibition by glycine than B. flavum. Release of cellular proteins during sonication was more rapid for B. lactofermentum than for B. flavum. Plasmid DNA (pCSL 17) isolated from B. flavum transformed recipient $McrBC^+$ strains of Escherichia coli with lower efficiency than $McrBC^-$. McrBC digestion of this DNA confirmed that B. flavum contain methylated cytidines in the target sequence of McrBc sequences but B. lactofermentum contained a different methylation pattern. DNA derived from the B. lactofermentum transformed recipient $EcoKR^+$ strains of E. coli with lower efficiency than $EcoKR^-$, indicating the presence of methylated adenosines in the target sequence of EcoK sequences. The present data describe the differences in the physical and enzymatic barriers between two species of corynebacteria and also provide some insight into the successful foreign gene expression in corynebacteria.
Keywords
Brevibacterium flavum; Brevibacterium lactofermentum; identification; transformation;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Britz, M. L. and A. L. Demain (1985) Regulation of metabolite synthesis. pp. 617-636. In: M. Moo-Young (ed.). Comprehensive Biotechnology. Vol 1. Pergamon Press, NY, USA
2 Billman-Jacobe, H., L. Wang, A. Kortt, D. Stewart, and A. Radford (1995) Expression and secretion of heterologous protease by Corynebacterium glutamicum. Appl. Environ. Microbiol. 61: 1610-1613
3 Tauch, A., O. Kirchner, L. Wehmeier, J. Kalinowski, and A. Pühler (1994) Corynebacterium glutamicum DNA is subjected to methylation-restriction in Escherichia coli. FEMS Microbiol. Lett. 123: 343-348   DOI   ScienceOn
4 Gottesman, M. E., Adhya, S., and A. Das (1980) Transcription antitermination by bacteriophage lambda N gene product. J. Mol. Biol. 140: 57-75   DOI   PUBMED
5 Bradford, M. M. (1976) A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein of protein-dye binding. Anal. Biochem. 72: 248-254   DOI   PUBMED   ScienceOn
6 Tomiyasu, I. and I. Yano (1984) Isonicotinic acid hydrazide induced changes and inhibition in mycolic acid synthesis in Nocardia and related taxa. Arch. Microbiol. 137: 316-323   DOI   ScienceOn
7 Jetten, M. S. M and A. J. Sinskey (1995) Recent advances in the physiology and genetics of amino acid-producing bacteria. Crit. Rev. Biotechnol. 15: 73-103   DOI   ScienceOn
8 Haynes, J. A. and M. L. Britz (1990) The effect of growth conditions of Corynebacterium glutamicum on the transformation frequency obtained by electroporation. J. Gen. Microbiol. 136: 255-263   DOI
9 Hodgson, A. L. M., J. A. Hayes, M. L. Britz, and I. T. Nisbet (1989) Construction and utilisation of a Corynebacterium- E. coli shuttle vector. pp. 181-184. Proceeding of the VIIIth Biotechnology Conference. Australian Biotechnology Association, Sydney, Australia
10 Hishimura, F., K. Izaki, and H. Takahashi (1969) Effect of glycine and D-amino acids on growth of various microorganisms. Agric. Biol. Chem. 33:1577-1586   DOI
11 Smith, M. D., J. L. Flickinger, D. W. Lineberger, and B. Schmidt (1986) Protoplast transformation in coryneform bacteria and introduction of $\alpha$-amylase gene from Bacillus amyloliquifacients into Brevibacterium lactofermentum. Appl. Environ. Microbiol. 51: 634-639
12 Ahn, J. O., J. M. Ryu, H. W. Jang, and J. K. Jang (2004) Effect of growth rate on the production of L-Proline in the fed-batch culture of Corynebacterium acetoacidophilum. Biotechnol. Bioprocess Eng. 9: 326-329   DOI   ScienceOn
13 Niederweis, M., E. Maier, T. Lichtinger, R. Benz, and R. Kramer (1995) Identification of channel-forming activity in the cell wall of Corynebacterium glutamicum. J. Bacteriol. 177: 5716-5718   DOI
14 Yang, Y. J., C. H. Lee, and Y. M. Koo (2004) Separation of amino acids by simulated moving bed using competitive langmuir isotherm. Biotechnol. Bioprocess Eng. 9: 331-338   DOI   ScienceOn
15 Kim, O. S., H. J. Kwak, J. H. Lee, J. M. Ha, B. J. Ha, and S. H. Lee (2004) Development of an E. coli expression cassette for the efficient production of a harmful protein. Biotechnol. Bioprocess Eng. 9: 389-392   DOI   ScienceOn
16 Collins, M. D., M. Goodfellow, and D. E. Minnikin (1982) A survey of the structures of mycolic acids in coryneform bacterium and related taxa. J. Gen. Microbiol. 128: 129-149
17 Sambrook, J., E. F. Fritsch, and T. Maniatis (1989) Molecular Cloning: A Laboratory Mannual. 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA
18 Waite-Rees, P. A., C. J. Keating, L. S. Moran, B. E. Slatko, L. J. Hornstra, and J. S. Benner (1991) Chracterization and expression of the Escherichia coli Mrr restriction system. J. Bacteriol. 173: 5207-5219   DOI
19 Hammes, W., K. H. Schleifer, and O. Kandler (1973) Mode of action of glycine on the biosynthesis of peptidoglycan. J. Bacteriol. 116: 1029-1053
20 Britz, M. L. and G. R. Best (1986) Expression of chloramphenicol resistance specified by plasmid pHY416 hosted in Corynebacterium glutamicum. Current Microbiol. 14: 13-17   DOI
21 Raleigh, E. A. (1987) Restriction and modification in vivo by Escherichia coli K-12. Methods Enzymol. 152: 130-141   DOI
22 Sancar, A. and C. S. Rupert (1978) Determination of plasmid molecular weights from ultraviolet sensitivities. Nature 272: 471-472   DOI   ScienceOn
23 Liebl, W., M. Ehrmann, W. Ludwig, and K. H. Schleifer (1991) Transfer of Brevibacterium divaricatum DSM $20297^T$ Brevibacterium flavum' DSM 20411, 'Brevibacterium lactofermentum' DSM 20412 and DSM 1412, and Corynebacterium lilium DSM $20137^T$ to Corynebacterium glutamicum and their distinction by rRNA gene restriction patterns. Int. J. Syst. Bacteriol. 41: 255-260   DOI   ScienceOn
24 Jang, K. H., P. J. Chambers, and M. L. Britz (1996) Analysis of nucleotide methylation in DNA from Corynebacterium glutamicum and related species. FEMS Microbiol. Lett. 136: 309-315   DOI
25 Yoshihama, M., K. Higarshiro, E. A. Rao, M. Akedo, W. G. Shanabruch, M. T. Follettie, G. C. Walker, and A. J. Sinskey (1985) Cloning vector system for Corynebacterium glutamicum. J. Bacteriol. 162: 591-597
26 Jang, K. H., P. J. Chambers, U. H. Chun, and M. L. Britz (2001) Characterization of the cell-surface barriers to plasmid transformation in Corynebacterium glutamicum. J. Microbiol. Biotechnol. 11: 294-301
27 Raleigh, E. A., N. E. Murray, H. Revel, R. M. Blumenthal, D. Westaway, A. D. Reith, P. W. Rigby, J. Elhai, and D. Hanahan (1988) McrA and McrB restriction phenotypes of some E. coli strains and implications for gene cloning. Nucleic Acids Res. 16: 1563-1575   DOI   ScienceOn