• Title/Summary/Keyword: enzymatic production

Search Result 668, Processing Time 0.034 seconds

Production of Total Reducing Sugar from Enteromorpha intestinalis Using Citrate Buffer Pretreatment and Subsequent Enzymatic Hydrolysis (창자파래로부터 citrate buffer를 이용한 전처리와 효소가수분해를 통한 환원당 생산)

  • Kim, Dong-Hyun;Kim, A-Ram;Park, Don-Hee;Jeong, Gwi-Taek
    • Korean Chemical Engineering Research
    • /
    • v.54 no.1
    • /
    • pp.70-74
    • /
    • 2016
  • In this study, the effects of citrate buffer pretreatment conditions (solid-to-liquid ratio, reaction temperature, pH and concentration of buffer) on enzymatic hydrolysis of E. intestinalis for total reducing sugar (TRS) production were investigated. As a results of the citrate buffer pretreatment, a 5.40% hydrolysis yield was obtained under conditions including 1:10 solid-to-liquid ratio, 0.25 M citrate buffer (pH 3.5) at $140^{\circ}C$ for 60 min. The maximum hydrolysis yield of 18.68% was obtained to enzymatic hydrolysis after pretreatment. This result is 1.81 times higher than that of control.

Pretreatment and Enzymatic Saccharification of Wasted MDF for Bioethanol Production (바이오에탄올 생산을 위한 폐MDF의 전처리 및 효소 당화)

  • Kang, Yang-Rae;Hwang, Jin-Sik;Bae, Ki-Han;Cho, Hoon-Ho;Lee, Eun-Jeong;Cho, Young-Son;Nam, Ki-Du
    • KSBB Journal
    • /
    • v.30 no.6
    • /
    • pp.332-338
    • /
    • 2015
  • The objective of this study was designed to determine the possibility of bioethanol production from wasted medium density fiberboard (wMDF). We were investigated the enzymatic saccharification characteristics using the enzyme (Cellic CTec3) after pretreatment with sodium chlorite. According to the component analysis results, the lignin contents before and after the pretreatment of wMDF (milling using sieve size of $1,000{\mu}m$) was significantly reduced from 31.13% to 4.11%. Therefore, delignification ratio of pretreated wMDF was found to be up to about 87-89% depending on the sieve size. And we were tested to compare the saccharification ratio according to the sieve size of wMDF ($1,000{\mu}m$, $200{\mu}m$), but it was no significance depending on the sieve size. When enzyme dosage was 5% based on the substrate concentration, enzymatic saccharification ratio was obtained up to 70% by maintaining at $50^{\circ}C$ for 72 hours. We could made the substrate concentration of pretreated wMDF ($1,000{\mu}m$) up to 12% and then enzymatic saccharification ratio was 76.8%, also contents of glucose and xylose were analyzed to 77,750 and 14,637 mg/L, respectively.

Enzymatic Hydrolysis Condition of Pretreated Corncob by Oxalic Acid to Improve Ethanol Production (에탄올 생산 향상을 위한 옥살산 전처리 옥수숫대의 효소가수분해 조건 탐색)

  • Lim, Woo-Seok;Lee, Jae-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.4
    • /
    • pp.294-301
    • /
    • 2012
  • In this study, we investigated the features of bioethanol fermentation of corncob biomass after oxalic acid pretreatment as well as enzymatic hydrolysis. The enzymatic hydrolysis was performed with Accellerase 1000 and the highest yield of monomeric sugars ($64.8g/{\ell}$) was obtained at $50^{\circ}C$ and pH 4.5 for 96 hrs hydrolysis period. For the ethanol fermentation the monomeric sugars obtained from pretreated corncob were subjected to the biological treatment using Pichia stipitis CBS 6054. It was turned out that ethanol production from oxalic acid pretreated corncob was the most feasible at 10~14% of biomass loading as well as 15 FPU enzyme amount. Under these fermentation condition, the ethanol yield was approached to 0.47 after 24 hrs fermentation period, which was corresponded to 92.2% of conversion rate.

Effect of torrefaction on enzymatic saccharification of lignocellulosic biomass (목질계 바이오매스의 효소당화에서 반탄화 전처리 영향)

  • Choi, Hyoyeon;Pak, Daewon
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.1-5
    • /
    • 2015
  • This study is to investigate the effect of torrefaction on enzymatic hydrolysis of lignocellulosic biomass for bio-ethanol production. As a pretreatment, the torrefaction of lignocellulosic biomass was conducted in temperature of $250{\sim}350^{\circ}C$ in the absence of oxygen. Tween-80, nonionic surfactant, was tested to enhance saccharification efficiency by coping with hydrophobicity resulted from torrefaction. As a result, the glucose production from enzymatic hydrolysis of biomass pretreated by torrefaction was greater than that obtained from the non-pretreated biomass. Sugar conversion was higher when the biomass was saccharified with addition of tween-80. It was found that torrefaction can be applied as a preptreatment for lignocellulosic biomass and tween-80 is needed to enhance its enzyme saccharification.

Optimal conditions of enzymatic hydrolysis for producing anti-inflammatory peptides from sandfish (Arctoscopus japonicus) hydrolysate (도루묵 가수분해물 유래 항염증 펩타이드 제조를 위한 효소 가수분해 최적 조건)

  • Jang, Hye Lim;Yoon, Kyung Young
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.2
    • /
    • pp.203-208
    • /
    • 2018
  • In this study, the hydrolysis conditions for the production of anti-inflammatory peptides from meat and roe hydrolysates of sandfish (Arctoscopus japonicus) were determined by measuring the nitric oxide (NO) scavenging enzymatic activity, experimental pH, temperature, enzyme concentration, and hydrolysis time. The optimal conditions determined when using meat hydrolysate were a pH value of 5.0, at a temperature of $30^{\circ}C$, 1% enzyme concentration, and 4 h hydrolysis time. The optimal conditions when using roe hydrolysate were a pH of 5.0, a temperature of $70^{\circ}C$, enzyme concentration of 3%, and hydrolysis time of 3 h. The NO scavenging activities of meat and roe hydrolysate were determined to be 18.94 and 19.81%, respectively. In summary, this study determined the optimum enzymatic hydrolysis conditions for the production of anti-inflammatory peptides from sandfish.

Antioxidant Effect of Enzymatic Hydrolyzate from a Kelp, Ecklonia cava

  • Heo, Soo-Jin;Jeon, You-Jin;Lee, Je-Hee;Kim, Hung-Tae;Lee, Ki-Wan
    • ALGAE
    • /
    • v.18 no.4
    • /
    • pp.341-347
    • /
    • 2003
  • The potential antioxidative activity of water-soluble enzymatic hydrolyzates from a kelp, Ecklonia cava was evaluated by free radical scavenging and lipid peroxidation assays. To prepare water-soluble hydrolyzates from E. cava the seaweed was enzymatically hydrolyzed by five carbohydrases (Viscozyme, Celluclast, AMG, Termamyl and Ultraflo) and five proteases (Protamex, Kojizyme, Neutrase, Flavourzyme and Alcalase). Among all the hydrolyzates, Celluclast hydrolyzate effectively scavenged free radicals released from DPPH (1,1-diphenyl-2- pricrylhydrazyl) and recorded around 73% scavenging activity at the concentration of 4 mg ${\cdot}ml^{-1}$. This hydrolyzate was thermally stable and DPPH radical scavenging activity remained 80% or higher at heating temperatures of 40 and 60$^{\circ}C$ up to 12 h and around 80% at 100$^{\circ}C$ up to 8 h. AMG and Ultraflo hydrolyzate inhibited the lipid peroxidation of fish oil as that of $\alpha$-tocopherol. These results suggested that an enzymatic extraction will be an effective way for the production of a potential antioxidant from seaweeds.

Comparison of enzymatic hydrolysis characteristics of mushroom culutured waste (MCW) and Cork oak by alkali treatment (알칼리 처리에 따른 폐골목 및 굴참나무의 효소당화 특성 비교)

  • Yoon, Su-Young;Seung, Hyun-A;Shin, Soo-Jeong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.3
    • /
    • pp.44-49
    • /
    • 2014
  • The mushroom cultured waste(MCW) from cork oak was evaluated as the raw material for bioethanol production. For enzymatic hydrolysis, cellulase cocktails (Celluclast 1.5L and Novozym 188) was used for polysaccharides to monosaccharides conversion. Compared with sound cork oak woodmeal, woodmeal from MCW showed higher cellulose to glucose conversion. To improve polysaccharides to monosaccharides conversion, pretreatment by sodium hydroxide was applied. Even though more xylan and lignin were removed in woodmeal of MCW than that of cork oak, concentration of glucose was higher from sodium hydroxide treated cork oak woodmeal (51.3 g/L) than treated MCW woodmeal (41.6 g/L).

Enzymatic synthesis of cephalexin

  • Rhee, D.K.;Rhee, J.S.;Ryu, D.Y.
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1978.10a
    • /
    • pp.206.4-206
    • /
    • 1978
  • By utilizillg whole cell enzyme of the Xantho-monas citri IFO 3835, cephalexin is synthesized directly from 7-amino-deacetoxy cephalosporanic acid (7-ADCA) and phenyl glycine methyl ester (PGM). To date, cephalexin has been manufactu-red by chemical process involving fairly large number of steps to protect the amino group of phenly glycine and carboxyl group of 7-ADCA. However, the enzymatic process involves only a single step with 85% conversion in 90 minutes. The fermentation variables studied indicate that oxygen transfer is limiting step in the enzyme production. Optimum conditions for enzymatic reaction were 37 C, pH 6.0, and the optimum substrate molar ratio of PGM to 7-ADCA was 2. Other variables that are related to the biochemical properties of whole cell enzyme temperature stability, pH stability, kinetic constants, reusing effect, enzyme loading effect were also evaluated.

  • PDF

Chemical Characteristics and Ethanol Fermentation of the Cellulose Component in Autohydrolyzed Bagasse

  • Asada Chikako;Nakamura Yoshitoshi;Kobayashi Fumihisa
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.4
    • /
    • pp.346-352
    • /
    • 2005
  • The chemical characteristics, enzymatic saccharification, and ethanol fermentation of autohydrolyzed lignocellulosic material that was exposed to steam explosion were investigated using bagasse as the sample. The effects of the steam explosion on the change in pH, organic acids production, degrees of polymerization and crystallinity of the cellulose component, and the amount of extractive components in the autohydrolyzated bagasse were examined. The steam explosion decreased the degree of polymerzation up to about 700 but increased the degree of crystallinity and the micelle width of the cellulose component in the bagasse. The steam explosion, at a pressure of 2.55 MPa for 3 mins, was the most effective for the delignification of bagasse. 40 g/L of glucose and 20 g/L of xylose were produced from 100 g/L of the autohydrolyzed bagasse by the enzymatic saccharification using mixed cellulases, acucelase and meicelase. The maximum ethanol concentration, 20 g/L, was obtained from the enzymatic hydrolyzate of 100 g/L of the autohydrolyzed bagasse by the ethanol fermentation using Pichia stipitis CBS 5773; the ethanol yield from sugars was 0.33 g/g sugars.