• Title/Summary/Keyword: enzymatic pretreatment

Search Result 181, Processing Time 0.025 seconds

Evaluation of Galactose Adapted Yeasts for Bioethanol Fermentation from Kappaphycus alvarezii Hydrolyzates

  • Nguyen, Trung Hau;Ra, Chae Hun;Sunwoo, In Yung;Jeong, Gwi-Taek;Kim, Sung-Koo
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.7
    • /
    • pp.1259-1266
    • /
    • 2016
  • Bioethanol was produced from Kappaphycus alvarezii seaweed biomass using separate hydrolysis and fermentation (SHF). Pretreatment was evaluated for 60 min at 121℃ using 12% (w/v) biomass slurry with 364 mM H2SO4. Enzymatic saccharification was then carried out at 45℃ for 48 h using Celluclast 1.5 L. Ethanol fermentation with 12% (w/v) K. alvarezii hydrolyzate was performed using the yeasts Saccharomyces cerevisiae KCTC1126, Kluyveromyces marxianus KCTC7150, and Candida lusitaniae ATCC42720 with or without prior adaptation to high concentrations of galactose. When non-adapted S. cerevisiae, K. marxianus, and C. lusitaniae were used, 11.5 g/l, 6.7 g/l, and 6.0 g/l of ethanol were produced, respectively. When adapted S. cerevisiae, K. marxianus, and C. lusitaniae were used, 15.8 g/l, 11.6 g/l, and 13.4 g/l of ethanol were obtained, respectively. The highest ethanol concentration was 15.8 g/l, with YEtOH = 0.43 and YT% = 84.3%, which was obtained using adapted S. cerevisiae.

Enzymatic Hydrolysis of Pretreated Chitin by Aspergillus carneus Chitinase

  • Mohamed, Abdel-Naby;Kwon, Dae-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.2 no.3
    • /
    • pp.197-203
    • /
    • 1992
  • Studies of the pretreatment of chitin and its subsequent hydrolysis by Aspergillus carneus chitinase are reported. Ball milling was found to be the most effective way among the pretreatment methods tested. Data are presented describing the effect of enzyme and substrate concentrations on the rate and extent of the hydrolysis process. It was found that the successive addition of enzyme improved the saccharification yield. Significant product inhibition of the chitinase was observed when N-acetylglucosamine concentration was 3.6% or higher. Adsorption of enzymes to the substrate occurred during a 24 hr hydrolysis period. An initial rapid and extensive adsorption occurred, followed by gradual desorption which increased during the time of reaction. Intermediate removal of the hydrolyzate and continuation of the hydrolysis by adsorbed enzyme on the residual chitin was also investigated. A total of 75.4 g/l reducing sugars, corresponding to 69.2% saccharificaton yield (as N-acetylglucosamine) was obtained. In addition an increase in the amount of recoverable enzymes was observed under these conditions. Evidence presented here suggests that the technique, whereby the free enzymes in the recovered hydrolyzate are re-adsorbed onto the new substrate, may provide a means of recirculating the dissolved enzymes.

  • PDF

Optimization of soaking in aqueous ammonia pretreatment of canola residues for sugar production (당 생산을 위한 카놀라 부산물의 암모니아 침지 전처리 공정의 최적화)

  • Yoo, Hah-Young;Kim, Sung Bong;Lee, Sang Jun;Lee, Ja Hyun;Suh, Young Joon;Kim, Seung Wook
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.114.1-114.1
    • /
    • 2011
  • Bioenergy production from lignocellulosic biomass and agriculture wastes have been attracted because of its sustainable and non-edible source. Especially, canola is considered as one of the best feedstock for renewable fuel production. Oil extracted canola and its agriculture residues are reuseable for bioethanol production. However, a pretreatment step is required before enzymatic hydrolysis to disrupt recalcitrant lignocellulosic matrix. To increase the sugar conversion, more efficient pretreatment process was necessary for removal of saccharification barriers such as lignin. Alkaline pretreatment makes the lignocellulose swollen through solvation and induces more porous structure for enzyme access. In our previous work, aqueous ammonia (1~20%) was utilized for alkaline reagent to increase the crystallinity of canola residues pretreatment. In this study, significant factors for efficient soaking in aqueous ammonia pretreatment on canola residues was optimized by using the response surface method (RSM). Based on the fundamental experiments, the real values of factors at the center (0) were determined as follows; $70^{\circ}C$ of temperature, 17.5% of ammonia concentration and 18 h of reaction time in the experiment design using central composition design (CCD). A statistical model predicted that the highest removal yield of lignin was 54% at the following optimized reaction conditions: $72.68^{\circ}C$ of temperature, 18.30% of ammonia concentration and 18.30 h of reaction time. Finally, maximum theoretical yields of soaking in aqueous ammonia pretreatment were 42.23% of glucose and 22.68% of xylose.

  • PDF

Pretreatment of Wasted Corn Stalk from Gangwon Province for Bioethanol Production (강원지역 폐옥수수대로부터 바이오에탄올 생산을 위한 전처리 방법 개발)

  • Choi, Jae Min;Kang, Se Young;Yeom, Sung Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.19 no.3
    • /
    • pp.79-89
    • /
    • 2011
  • The wasted corn stalk from Gangwon province is composed of 44.6 % glucan, 19.0 % xylan, 23.8 % lignin, 4.5 % ash and 8.1 % others. Statistical analysis, full factorial design, revealed that temperature was the most influential factor in the dilute sulfuric acid pretreatment and that the influence of temperature on xylose yield was 3.5 and 3.2 times higher than those of treatment time and acid concentration, respectively. Temperature was also the most influential factor for glucose yield in the pretreatment but it was less than 5 % throughout the pretreatment. Although minor sugar yield was observed when microwave or ultrasonication was solely introduced as a pretreatment method, the complex method incorporating microwave or ultrasonication into dilute sulfuric acid pretreatment enhanced sugar yield significantly. In particular, xylose yield was doubled when microwave and dilute sulfuric acid treatment was sequentially applied. The optimization of pretreatment and enzymatic hydrolysis as well as the investigation on the complex pretreatment in detail are left for further study.

Evaluation of Pretreatment Effect and Non-enzymatic Glucose Sensing Performance of Carbon Fibers Tow Electrode (탄소섬유 토우의 전처리 효과와 비효소적 포도당 센싱 성능 평가)

  • Min-Jung Song
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.13-18
    • /
    • 2024
  • To develop flexible electrode materials for wearable devices, we investigated the electrochemical characteristics of carbon fibers tow according to pretreatment. And an electrochemical non-enzymatic sensor was fabricated using glucose as a target. The carbon fibers tow was pretreated through desizing and activation processes, and activation was performed in two ways: chemical oxidation and electrochemical oxidation. Surface morphology of carbon fibers tow samples was observed by SEM and their electrochemical characteristics and sensing performance were investigated by cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry. Carbon fibers tow samples showed improved electrochemical properties such as reduced Ret, ΔEp, and increased Ip through pretreatment. And similar electrochemical properties were obtained with both activation methods. We selected electrochemically activated carbon fibers tow as the final electrode material for application of electrochemical sensor. The non-enzymatic glucose sensor based on this electrode has an enhanced sensitivity of 0.744 A/mM (in a linear range of 0.09899~3.75423 mM) and 0.330 mA/mM (3.75423~50 mM), respectively. Through this study, the possibility of using carbon fibers tow was confirmed as an electrode material. It is expected to be used as basic research for development of high-performance flexible electrode materials.

Electrochemical Characteristics of Pencil Graphite Electrode Through Surface Modification and its Application of Non-enzymatic Glucose Sensor (표면 개질된 샤프심 전극의 전기화학적 특성 고찰 및 비효소적 글루코스 센서 활용)

  • Min-Jung Song
    • Korean Chemical Engineering Research
    • /
    • v.62 no.2
    • /
    • pp.147-152
    • /
    • 2024
  • Most medical sensors are disposable products. In order to reduce inspection and diagnosis costs, it is more important to develop the inexpensive electrode materials. We fabricated the CuO NPs/PANI/E-PGE as an electrode material for disposable electrochemical sensors and applied it to a non-enzymatic glucose sensor. For surface activation of PGE, pretreatment was performed using chemical and electrochemical methods, respectively. Electrochemical properties according to the pretreatment method were analyzed through chronoamperometry (CA), cyclic voltammetry (CV) and electrochemical impedance (EIS). From these analytical results, the electrochemically pretreated PGE (E-PGE) was finally adopted. The non-enzymatic glucose sensor based on CuO NPs/PANI/E-PGE shows sensitivity of 239.18 mA/mM×cm2 (in a linear range of 0.282~2.112 mM) and 36.99 mA/mM×cm2 (3.75423~50 mM), detection limit of 17.6 μM and good selectivity. Based on the results of this study, it was confirmed that the modified PGE is a high-performance electrode material. Therefore, these electrodes can be applied to a variety of disposable sensors.

Alkaline Peroxide Pretreatment of Waste Lignocellulosic Sawdust for Total Reducing Sugars

  • Satish Kumar Singh;Sweety Verma;Ishan Gulati;Suman Gahlyan;Ankur Gaur;Sanjeev Maken
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.412-418
    • /
    • 2023
  • The surge in the oil prices, increasing global population, climate change, and waste management problems are the major issues which have led to the development of biofuels from lignocellulosic wastes. Cellulosic or second generation (2G) bioethanol is produced from lignocellulosic biomass via pretreatment, hydrolysis, and fermentation. Pretreatment of lignocellulose is of considerable interest due to its influence on the technical, economic and environmental sustainability of cellulosic ethanol production. In this study, furniture waste sawdust was subjected to alkaline peroxide (H2O2) for the production of reducing sugars. Sawdust was pretreated at different concentrations from 1-3% H2O2 (v/v) loadings at a pH of 11.5 for a residence time of 15-240 min at 50, 75 and 90 ℃. Optimum pretreatment conditions, such as time of reaction, operating temperature, and concentration of H2O2, were varied and evaluated on the basis of the amount of total reducing sugars produced. It was found that the changes in the amount of lignin directly affected the yield of reducing sugars. A maximum of 50% reduction in the lignin composition was obtained, which yielded a maximum of 75.3% total reducing sugars yield and 3.76 g/L of glucose. At optimum pretreatment conditions of 2% H2O2 loading at 75 ℃ for 150 min, 3.46 g/L glucose concentration with a 69.26% total reducing sugars yield was obtained after 48 hr. of the hydrolysis process. Pretreatment resulted in lowering of crystallinity and distortion of the sawdust after the pretreatment, which was further confirmed by XRD and SEM results.

Changes of Carbohydrate Composition and Enzyme Adsorption on the Hydrolysis of Steam Exploded Wood by Cellulase (Cellulase에 의한 폭쇄재의 가수분해에 있어서 탄수화물조성 및 효소흡착량 변화)

  • Yang, Jae-Kyung;Kim, Chul-Hwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.67-78
    • /
    • 2001
  • Two species(Quercus mongolica, populus euramericana) of hardwood chips were subjected to steam explosion 25 kg/$cm^2$, for 6 min. The exploded woods were treated by the single or multi-stage chemical process with sodium hydroxide, sodium hypochlorite and sodium chlorite. The multi-stage treatment of exploded wood can be successfully removed lignin. Enzymatic hydrolysis rate of substrate varied from 25% for exploded wood to about 80% for the multi-chemical treated exploded wood. The enzymatic susceptibility was different among wood species. The multi chemical treatment of the exploded wood resulted in the high rate of glucose in the enzymatic hydrolyzate. Cellulase adsorption increased at high lignin content of substrates, while crystallinity, pore area and specific surface area of substrates did not affected enzyme adsorption. According to the proposed pretreatment and saccharification process in this study, it can be acquired about 37~40 kg of glucose from 100 kg of hardwood.

  • PDF

Enzymatic Hydrolysis Characteristics of Pretreated Rice Straw By Aqueous Ammonia for Bioethanol Production (바이오에탄올 생산을 위한 암모니아수에 의해 전처리된 볏짚의 효소당화 특성)

  • Park, Yong Cheol;Kim, Jun Seok
    • Korean Chemical Engineering Research
    • /
    • v.49 no.4
    • /
    • pp.470-474
    • /
    • 2011
  • Rice straw is the main grain straw and is produced in large quantities every year in Korea. Pretreatment of lignocellulosic biomass using soaking process was carried out mild conditions at atmospheric pressure and temperature of $60^{\circ}C$. We found enzymatic hydrolysis condition of pretreated biomass. In case of a rice straw, compared with previous lignocellulosic biomass, we found that hydrolysis time was a shorter than others. Hydrolysis of SAA-treated rice straw has shown conversion rate was higher at $50^{\circ}C$. Hydrolysis was ended between 40~48 hour. Glucose conversion rate was higher when enzyme loading is 65 FPU/ml and 32 CbU/ml. When substrate concentration was 5%(w/v), it was that conversion rate was 83.8% after hydrolysis for 72 hr. In simultaneous saccharification and fermentation(SSF) experiment about SAA-treated rice straw, ethanol productive yield was highest from $40^{\circ}C$. The yield of that time was 33.05% from 48 hour.

Characterization of Pretreatment for Barley straw by Alkaline Solutions (염기 용매를 이용한 보릿짚의 전처리 특성)

  • Kim, Kyoung-Seob;Kim, Jun Seok
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.18-24
    • /
    • 2012
  • Lignocellulose is difficult to hydrolyze due to the presence of lignin and the technology developed for cellulose fermentation to ethanol is not yet economically viable. However, recent advances in the extremely new field of biotechnology for the ethanol production are making it possible to use of Agriculture residual biomass, e.q., Barley straw, because of their several superior aspects as Agriculture residual biomass; low lignin, high contents of carbohydrates. Barley straw consists of 39.78% cellulose (glucose), 22.56% hemicelluloses and 19.27% lignin. Pretreatment of barley straw using NaOH pretreatment solutions concentration with 2%, temperature $85^{\circ}C$ and reaction times 1 hr were investigates. $NH_4OH$ pretreatment condition was solutions concentration with 15%, temperature $60^{\circ}C$, and reaction times 24hr were investigates. Furthermore, enzymatic saccharification using cellulose at $50^{\circ}C$, pH 4.8, 180 rpm for conversion of cellulose contained in barley straw to monomeric sugar. The pretreatment of barley straw using NaOH and $NH_4OH$ can significantly improve enzymatic saccharification of barley straw by extract more lignin and increasing its accessibility to hydrolytic enzymes. The result showed NaOH pretreatment extracted yield of lignin was 24.15%. $NH_4OH$ pretreatment extracted yield of lignin was 29.09%. Shaccharification of barley straw pretreatment by NaOH for 72hr and pH 4.8 result in maximum glucose concentration 15.39g/L (58.40%) and by $NH_4OH$ for 72hr and pH 4.8 result in maximum glucose concentration 16.01g/L (64.78%).