• Title/Summary/Keyword: enzymatic characterization

Search Result 294, Processing Time 0.027 seconds

Characterization of polysaccharide A-1 from Opuntia ficus-indica and it's protection effect on alcoholic induced hepatic oxidative stress (Opuntia ficus-indica 다당 A-1의 특성 및 알코올유도 간 산화스트레스의 보호 효과)

  • Ryu, Il-Hwan;Kwon, Ji-Wung;Lee, Eoh-Jin;Yun, Young-Gab;Kwon, Tae-Oh
    • Herbal Formula Science
    • /
    • v.17 no.2
    • /
    • pp.163-174
    • /
    • 2009
  • Reactive oxygen species(ROS) can induce hepatotoxicity and trigger apoptosis in the liver. In this study, we investigated the sulfated polysaccharide A-1 from Opuntia ficus-indica against alcoholic oxidative stress in human liver Hep G2 cell. An antioxidant substance A-1 obtained from the enzymatic extract of Opuntia ficus-indica fruit was purified by DEAE-cellulose ion exchange and sephadex G-100 gel permeation chromatography. The purification yield and molecular weight were 14.3% and 1.8 KDa, respectively. The A-1 predominately contained arabinose, galactose, rhamnose and also sulfate group. The structure of A-1 was investigated by periodate oxidation, FT-IR spectroscopy, $^1H$-NMR spectroscopy. The A-1 mainly composed of alternating unit of ${\rightarrow}4$)-$\alpha$-L- Rapp-2-$SO_3^-$-$\alpha$-L-Galp-($1{\rightarrow}$ and branched linkage of $\beta$-D-Arbp- ($5{\rightarrow}$. The antioxidative activity was measured using the SOD, CAT activity and GSH assay, respectively. The expression of Nrf2 protein was analyzed by western blotting. The viable cell count analyzed by autofluorescence. Oxidative stress induced by ethanol(1 M) were dramatically reduced by A-1 treatment. A-1 also prevented cell death induced by oxidative stress. It also increased expression Nrf2 protein level. We concluded that sulfated polysaccharide A-1 from Opuntia ficus-indica effectively protect Hep G2 liver cell from alcoholic oxidative stress.

  • PDF

Isolation and Characterization of a 32-kDa Fibrinolytic Enzyme (FE-32kDa) from Gloydius blomhoffii siniticus Venom -Fibrinolytic Enzyme from Gloydius blomhoffii siniticus Venom-

  • Kim, Joung-Yoon;Lee, Seung-Bae;Kwon, Ki Rok;Choi, Suk-Ho
    • Journal of Pharmacopuncture
    • /
    • v.17 no.1
    • /
    • pp.44-50
    • /
    • 2014
  • Objectives: This study was undertaken to isolate a fibrinolytic enzyme from the snake venom of Gloydius blomhoffii siniticus and to investigate its enzymatic characteristics and hemorrhagic activity as a potential pharmacopuncture agent. Methods: The fibrinolytic enzyme was isolated by using chromatography, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and fibrin plate assay. The characteristics of the enzyme were investigated using fibrin plate assay, protein hydrolysis analysis, and hemorrhage assay. Its amino acid composition was determined. Results: The fibrinolytic enzyme with the molecular weight of 32kDa (FE-32kDa) from Gloydius blomhoffii siniticus showed a fibrin hydrolysis zone at the concentration of 0.2 mg/mL in the fibrin plate assay. The fibrin hydrolysis activity of the enzyme was inhibited completely by ethylenediaminetetraacetic acid (EDTA), ethyleneglycoltetraacetic acid (EGTA), and 1, 10-phenanthroline, thiothreitol and cysteine, and partially by phenylmethanesulfonylfluoride (PMSF). Metal ions such as $Fe^{2+}$ and $Hg^{2+}$ inhibited the fibrin hydrolysis completely, but $Zn^{2+}$ enhanced it. FE-32kDa hydrolyzed ${\alpha}$-chain but did not hydrolyze ${\beta}$-chain and ${\gamma}$-chain of fibrinogen. High-molecular-weight polypeptides of gelatin were hydrolyzed partially into low-molecular-weight polypeptides, but the extent of hydrolysis was limited. FE-32kDa induced hemorrhage beneath back skin of mice at the dose of $2{\mu}g$. Conclusions: FE-32kDa is a ${\alpha}$-fibrin(ogen)olytic metalloprotease that requires $Zn^{2+}$ for fibrinolytic activity and causes hemorrhage, suggesting that the enzyme is not appropriate for use as a clinical pharmacopuncture.

Metabolism of Rutin and Poncirin by Human Intestinal Microbiota and Cloning of Their Metabolizing α-L-Rhamnosidase from Bifidobacterium dentium

  • Bang, Seo-Hyeon;Hyun, Yang-Jin;Shim, Juwon;Hong, Sung-Woon;Kim, Dong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.1
    • /
    • pp.18-25
    • /
    • 2015
  • To understand the metabolism of flavonoid rhamnoglycosides by human intestinal microbiota, we measured the metabolic activity of rutin and poncirin (distributed in many functional foods and herbal medicine) by 100 human stool specimens. The average α-L-rhamnosidase activities on the p-nitrophenyl-α-L-rhamnopyranoside, rutin, and poncirin subtrates were 0.10 ± 0.07, 0.25 ± 0.08, and 0.15 ± 0.09 pmol/min/mg, respectively. To investigate the enzymatic properties, α-L-rhamnosidase-producing bacteria were isolated from the specimens, and the α-L-rhamnosidase gene was cloned from a selected organism, Bifidobacterium dentium, and expressed in E. coli. The cloned α-L-rhamnosidase gene contained a 2,673 bp sequcence encoding 890 amino acid residues. The cloned gene was expressed using the pET 26b(+) vector in E. coli BL21, and the expressed enzyme was purified using Ni2+-NTA and Q-HP column chromatography. The specific activity of the purified α-L-rhamnosidase was 23.3 µmol/min/mg. Of the tested natural product constituents, the cloned α-L-rhamnosidase hydrolyzed rutin most potently, followed by poncirin, naringin, and ginsenoside Re. However, it was unable to hydrolyze quercitrin. This is the first report describing the cloning, expression, and characterization of α-L-rhamnosidase, a flavonoid rhamnoglycosidemetabolizing enzyme, from bifidobacteria. Based on these findings, the α-L-rhamnosidase of intestinal bacteria such as B. dentium seem to be more effective in hydrolyzing (1 →6) bonds than (1 →2) bonds of rhamnoglycosides, and may play an important role in the metabolism and pharmacological effect of rhamnoglycosides.

Purification and Characterization of Fibrinolytic Enzyme Produced by Bacillus subtilis K7 Isolated from Korean Traditional Soy Sauce (한국재래간장 발효균 Bacillus subtilis K7 유래의 혈전용해 Protease의 정제 및 특성)

  • Kim, Doo-Young;Lee, Eun-Tag;Kim, Sang-Dal
    • Applied Biological Chemistry
    • /
    • v.46 no.3
    • /
    • pp.176-182
    • /
    • 2003
  • An alkaline fibrinolytic protease-producing bacteria was isolated front Korean traditional soy sauce and identified as Bacillus subtilis K7 from the results of analyses of its morphological and physiological properties, $API^{\circledR}$, and Biolog system. The enzyme was purified by 75% ammonium sulfate fractionation, QAE-Sephadex anion and SP-Sephadex cation exchange column chromatography and Sephadex G-100 gel filtration. The specific activity of the purified enByme was 233.9 unit/mg protein and the yield of enzyme was 3.8%. The homogeneity of the purified enzyme was confirmed by polyacrylamide gel electrophoresis. Molecular mass of the enzyme was estimated about 21,500 Da by SDS-polyacrylamide get electrophoresis and gel chromatography. The optimum temperature and pH for the enzyme activity were $40^{\circ}C$ and 9.0, respectively. The enzyme was stable in a pH range of 5.0 to 12.0, and 60% of its activity was lost on heat treatment at $50^{\circ}C$ for 20 min. The activity of the purified enzyme was inhibited by the presence of $Fe^{2+},\;Ag^{2+},\;Cu6{2+}$, iodoacetate, ethylene diamine tetraacetic acid (EDTA), and trans-1,2-diaminocycloheane-N,N,N',N'-tetraacetic acid (CDTA). The results indicates that the enzyme requires a metal ion for its enzymatic activity.

Isolation and Characterization of Proteoglycan Derived From Human Placenta and its Biological Activities

  • Lee, Kyung-Bok;Kim, Jong-Sig;Yoo, Yung-Choon;Kwak, Sang-Tae;Song, Kyung-Sik;Kim, Yeong-Shik
    • Archives of Pharmacal Research
    • /
    • v.23 no.2
    • /
    • pp.182-186
    • /
    • 2000
  • Chondroitin sulfates proteoglycans were isolated from human placenta. For the identification of enzymatic digestion products of isolated proteoglycan, strong anion exchange-high performance liquid chromatography (SAX-HPLC) was performed. By the action of chondroitin ABC and chondroitin B lyase, three unsaturated disaccharides 2-acetamide-2-deoxy-3-O-($\beta$-D-gluco-4-enepyranosyluronic acid)-D-galactose ($\delta$Di-OS), 2-acetamide-2-deoxy-3-O-($\beta$-D-gluco-4-enepyranosyluronic acid)-6-O-su lfo-D-galactose ($\delta$Di-6S) and 2-acetamide-2-deoxy-3-O-($\beta$-D-gl uco-4-enepyranosyluronic acid)-4-O-sulfo-D-galactose ($\delta$Di-4S) were produced from the human placenta proteoglycan. The anticoagulant activity of chondroitin sulfate proteoglycan was evaluated by activated partial thromboplastin time (aPTT) assay and thrombin time (TT) assay. The clotting times of aPTT and TT were increased from 72 to 144 sec and 19 to 27 sec, respectively. The Immune-modulating activity of chondroitin sulfate proteoglycan was examined by cell proliferation assay and these results suggest that it may play a role in suppression of the function of immune-related cells.

  • PDF

Isolation, Purification and Characterization of Antioxidative Bioactive Elastin Peptides from Poultry Skin

  • Nadalian, Mehdi;Kamaruzaman, Nurkhuzaiah;Yusop, Mohd Shakir Mohamad;Babji, Abdul Salam;Yusop, Salma Mohamad
    • Food Science of Animal Resources
    • /
    • v.39 no.6
    • /
    • pp.966-979
    • /
    • 2019
  • Muscle-based by-products are often undervalued although commonly reported having a high amount of natural bioactive peptides. In this study, elastin was isolated from the protein of broiler hen skin while its hydrolysate was prepared using Elastase. Assessment of antioxidative properties of elastin-based hydrolysate (EBH) was based on three different assays; 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) radical, 2,2'-azinobis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical and metal chelating ability. The EBH was purified further using ultrafiltration, gel filtration and Reverse- Phase High-Performance Liquid Chromatography (RP-HPLC). The IC50 of ABTS radical activities for EBH were decreased as EBH further purified using ultrafiltration (EBH III; 0.66 mg/mL)>gel filtration (EB-II; 0.42 mg/mL)>RP-HPLC (EB-II4; 0.12 mg/mL). The sequential identification of the peptide was done by matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/ TOF-MS) of the potent fractions obtained from RP-HPLC (EB-II4). The presence of hydrophobic amino acids (Val and Pro) in the peptide sequences could potentially contribute to the high antioxidant activity of EBH. The sequences GAHTGPRKPFKPR, GMPGFDVR and ADASVLPK were identified as antioxidant peptides. In conclusion, the antioxidative potential from poultry skin specifically from elastin is evident and can be explored to be used in many applications such as health and pharmaceutical purposes.

Characterization of Tofu-Residue Hydrolyzing Carbohydrase Isolated from Aspergillus niger CF-34 (Aspergillus niger CF-34로부터 분리한 두부 또는 두유비지 가용화 복합효소의 특성)

  • Kim, Kang-Sung;Sohn, Heon-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.490-495
    • /
    • 1994
  • Enzymatic solubilization of tofu-residue was attempted using carbohydrase isolated from Aspergillus niger CF-34. Tofu-residue, by-product of tofu manufacture or soymilk processing was used as the model for plant cell wall. It was found that tofu-residue was rich in nurients: 46.7% carbohydrate, 32.8% protein, the rest being lipid and ashes. Carbohydrate component of tofu-residue consisted of 36.8% cellulose and 62.6% hemicellulose. The carbohydrase was found to consist of pectinase, xylanase, PGase, CMCase, and SFase when tofu-residue and pectin were used as the carbon source. Enzyme induction was maximum at 7days of culture. Optimum reaction pH was 4.0, temperature $50^{\circ}C$. The enzyme was stable to $50^{\circ}C$, above which the stability decreased rapidly.

  • PDF

Molecular Characterization of a Novel Vegetative Insecticidal Protein from Bacillus thuringiensis Effective Against Sap-Sucking Insect Pest

  • Sattar, Sampurna;Maiti, Mrinal K.
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.9
    • /
    • pp.937-946
    • /
    • 2011
  • Several isolates of Bacillus thuringiensis (Bt) were screened for the vegetative insecticidal protein (Vip) effective against sap-sucking insect pests. Screening results were based on $LC_{50}$ values against cotton aphid (Aphis gossypii), one of the dangerous pests of various crop plants including cotton. Among the isolates, the Bt#BREF24 showed promising results, and upon purification the aphidicidal protein was recognized as a binary toxin. One of the components of this binary toxin was identified by peptide sequencing to be a homolog of Vip2A that has been reported previously in other Bacillus spp. Vip2 belongs to the binary toxin group Vip1-Vip2, and is responsible for the enzymatic activity; and Vip1 is the translocation and receptor binding protein. The two genes encoding the corresponding proteins of the binary toxin, designated as vip2Ae and vip1Ae, were cloned from the Bt#BREF24, sequenced, and heterologously expressed in Escherichia coli. Aphid feeding assay with the recombinant proteins confirmed that these proteins are indeed the two components of the binary toxins, and the presence of both partners is essential for the activity. Aphid specificity of the binary toxin was further verified by ligand blotting experiment, which identified an ~50 kDa receptor in the brush border membrane vesicles of the cotton aphids only, but not in the lepidopteran insects. Our finding holds a promise of its use in future as a candidate gene for developing transgenic crop plants tolerant against sap-sucking insect pests.

Molecular Cloning, Overexpression, and Enzymatic Characterization of Glycosyl Hydrolase Family 16 ${\beta}$-Agarase from Marine Bacterium Saccharophagus sp. AG21 in Escherichia coli

  • Lee, Youngdeuk;Oh, Chulhong;Zoysa, Mahanama De;Kim, Hyowon;Wickramaarachchi, Wickramaarachchige Don Niroshana;Whang, Ilson;Kang, Do-Hyung;Lee, Jehee
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.7
    • /
    • pp.913-922
    • /
    • 2013
  • An agar-degrading bacterium was isolated from red seaweed (Gelidium amansii) on a natural seawater agar plate, and identified as Saccharophagus sp. AG21. The ${\beta}$-agarase gene from Saccharophagus sp. AG21 (agy1) was screened by long and accurate (LA)-PCR. The predicted sequence has a 1,908 bp open reading frame encoding 636 amino acids (aa), and includes a glycosyl hydrolase family 16 (GH16) ${\beta}$-agarase module and two carbohydrate binding modules of family 6 (CBM6). The deduced aa sequence showed 93.7% and 84.9% similarity to ${\beta}$-agarase of Saccharophagus degradans and Microbulbifer agarilyticus, respectively. The mature agy1 was cloned and overexpressed as a His-tagged recombinant ${\beta}$-agarase (rAgy1) in Escherichia coli, and had a predicted molecular mass of 69 kDa and an isoelectric point of 4.5. rAgy1 showed optimum activity at $55^{\circ}C$ and pH 7.6, and had a specific activity of 85 U/mg. The rAgy1 activity was enhanced by $FeSO_4$ (40%), KCl (34%), and NaCl (34%), compared with the control. The newly identified rAgy1 is a ${\beta}$-agarase, which acts to degrade agarose to neoagarotetraose (NA4) and neoagarohexaose (NA6) and may be useful for applications in the cosmetics, food, bioethanol, and reagent industries.

In vitro characterization of human dental pulp stem cells isolated by three different methods

  • Jang, Ji-Hyun;Lee, Hyeon-Woo;Cho, Kyu Min;Shin, Hee-Woong;Kang, Mo Kwan;Park, Sang Hyuk;Kim, Euiseong
    • Restorative Dentistry and Endodontics
    • /
    • v.41 no.4
    • /
    • pp.283-295
    • /
    • 2016
  • Objectives: In this study, we characterized human dental pulp cells (HDPCs) obtained by different culture methods to establish the most suitable methodology for dental tissue engineering and regenerative endodontic applications. Materials and Methods: HDPCs were isolated by the outgrowth method (HDPCs-OG), the enzymatic digestion method (collagenase/dispase/trypsin, HDPCs-ED), or the combination of both methods (HDPCs-Combined). The expression of mesenchymal stem cell markers (CD105, CD90, and CD73) was investigated. In vitro differentiation capacities of HDPCs into adipogenic, osteogenic, and chondrogenic lineages were compared. Differentiation markers were analyzed by quantitative reverse-transcription polymerase chain reaction (RT-PCR) and western blotting. Results: Our data indicated that whole HDPCs-ED, HPDCs-OG, and HDPCs-Combined could be differentiated into adipogenic, chrondrogenic, and osteogenic cell types. However, we found that the methods for isolating and culturing HDPCs influence the differentiation capacities of cells. HDPCs-OG and HDPCs-ED were preferably differentiated into adipogenic and osteogenic cells, respectively. Differentiation markers shown by RT-PCR and western blotting analysis were mostly upregulated in the treated groups compared with the control groups. Conclusions: Our findings confirmed that cell populations formed by two different culture methods and the combined culture method exhibited different properties. The results of this study could provide an insight into regenerative endodontic treatment using HDPCs.