• Title/Summary/Keyword: environmental uniformity

Search Result 163, Processing Time 0.021 seconds

Soil Characteristics according to the Geological Condition of Soil Slopes in Landslide Area (산사태지역 토층사면의 지질조건별 토질특성)

  • Kim, Kyeong-Su
    • The Journal of Engineering Geology
    • /
    • v.16 no.4 s.50
    • /
    • pp.359-371
    • /
    • 2006
  • In this study, the soil characteristics are analyzed using the result of various soil tests as an object of the soil layer of natural slopes in landslides areas composed with gneiss, granite, and the tertiary sedimentary rock. To investigate the soil characteristics according to landslide and non landslide areas, soils are sampled from Jangheung, Sangju and Pohang. The landslides at three areas are occurred due to heavy rainfall in same time. The geology of Jangheung area, Sangju area and Pohang area is gneiss, granite, and the tertiary sedimentary rock, respectively. On the basis of the landslide data and the result of soil test, the soil characteristics at the landslide area and the differentiation between landslide area and non landslide area are analyzed. However soil characteristics have a little differentiation to geological condition, the uniformity coefficient and the coefficient of gradation of soils at the landslide area is larger than those of soils at the non landslide area. Also, the proportion of fine particle of soils at the landslide area is higher. The plastic limit of soils sampled from the granite and the sedimentary rock regions is larger than that sampled from the gneiss region. However the liquid limit is irrelevant to the geological condition. Also, the consistency of soils at the landslide area is smaller. The natural moisture content of soils in the sedimentary rock regions is larger than that of the granite and gneiss. It is mainly influenced by mineral composition, soil layer structure, weathering condition, and so on. The soils sampled from landslide area have higher porosity and lower density than those from non landslide area. It means that the soils of landslide area have poor particle size distribution and loose density. Therefore, the terrain slope with poor distribution and loose density is vulnerable to occur in landslides. Also, landslides are occurred in the terrain slope with high permeability. The permeability is mainly influenced by the soil characteristics such as particle size distribution, porosity, particle structure, and the geological origins such as weathering, sedimentary environment. Meanwhile, the shear strength of soils is little difference according to the geological condition. But, the internal friction angle of soils sampled from the landslide area is lower than that of soils from the non landslide area. Therefore, the terrain slope with low internal friction angle is more vulnerable to the landslide.

A Study on the Reasonable Measurement Point of Root Collar Diameter of Landscape Trees in Korea (한국 조경수목 근원직경 측정의 합리적 위치 설정에 대한 연구)

  • Han, Yong-Hee;Kim, Hwa-Jeong;Kim, Do-Gyun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.5
    • /
    • pp.59-70
    • /
    • 2021
  • This study was to investigate the measurement point of root collar diameter of landscape trees in Korea. It may contribute to avoiding disputes caused by the difference in measurement criteria of root collar diameter of landscape trees between tree growers and constructors. The difference between landscape trees' root collar diameter measurement point was 3.59cm from 6cm underground to the surface and 1.35cm from 0cm to 6cm above ground. The source root collar diameter measurement point difference was larger in the basement than in the ground. The standard deviation of the root collar diameter of the landscape tree was 0.64 from 6cm underground to the surface, and the difference in standard deviation from 0cm to 6cm above ground was 0.16. The difference by measurement point of the root collar diameter was larger in the basement than in the ground. It has been proposed to set the reasonable measurement point of the landscaping tree root collar diameter at the inflection point where the standard deviation of the tree trunk diameter is the smallest in line with the size change of the standard for each root collar diameter measurement point. By tree species, Cornus officinalis Siebold & Zucc. 18cm above the ground, Chionanthus retusus Lindl. & Paxton. 12cm above the ground, Zelkova serrata (Thunb.) Makino. 12cm above the ground, Celtis sinensis Pers. 12cm above the ground, Styrax japonicus Siebold & Zucc. 10 cm above the ground, Cornus officinalis Siebold & Zucc. 10cm above the ground, Acer palmatum Thunb. ex Murray. 6cm above the ground, Ilex rotunda Thunb. 6cm above the ground, Quercus myrsmaefolia Blume. 4cm above the ground, Lagerstroemia indica L. 2cm above the ground The above heights were shown as reasonable measurement points. The difference by landscape tree root collar diameter measurement site showed that the standard deviation was small throughout the tree species, and the reasonable average measurement point with a stable slope of the deviation was 12cm or more on average. It can be said that the reasonable measurement point of the root collar diameter of a landscape tree is set at an average of 12cm above the ground. However, recognizing 30cm, which is a familiar ruler(尺) in traditional practices, is quick, It was recommended to measure at the height of 30cm from the surface for a reasonable measurement point of the root collar diameter of a landscape tree, for the uniformity of measurement standards.

Evaluation of External Quality of Brand Soybeans (콩 시판 브랜드 제품의 외관 품질 평가)

  • Jong, Seung-Keun;Woo, Shun-Hee;Kim, Hong-Sig
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.52 no.3
    • /
    • pp.239-248
    • /
    • 2007
  • Although high nutritional values and continuous identification of important functional substances of soybean [Glycine max (L.) Merrill.] promote consumption of soybean products worldwide, informations on quality of brand soybean is not enough for consumers. Total of 100 brand soybeans [32 for soypaste and source, 45 black testa (lage), and 17 black testa (small) or medicinal soybean and beansprout soybean] were collected at supermarkets and several external quality factors were analyzed. Brand soybeans were marked with the environmental friendly and intimating words along with soybean (white or yellow), black soybean (black-, frost-, late frost-, green or inner-green-), medicinal soybean and beansprout soybean. Among 100 brand soybeans 30% was 1 kg package and 59% was 500 g package, difference between printed and actual weights of 70% brand soybeans was ${\pm}1%$ and weights of 2/3 of brand soybeans were higher than printed weight. Range of 100 seed weights of soypaste and source, black testa (large) and black testa (small) and beansprout soybeans were $23.7{\sim}47.8g$, $21.9{\sim}44.5g$ and $9.5{\sim}15.0g$, respectively. Although ranges of 100 seed weights of soypaste and source and black testa (large) soybeans were similar, 63% of soypaste and source were less than 29 g, while 78% of black testa (large) soybeans were higher than 30 g. Although average and highest percentages of seeds separated with 6.7 mm sieve were similar with 87.4% and 99.9% for soypaste and source soybean and 86.5% and 99.5% for black testa (large) soybean, respectively, the lowest percentages were 70.7% for soypaste and source soybean and 14.4% for black testa (large) soybean. When 100 seed weight was greater than 35 g, 90% of seeds were remained on 6.7 mm sieve. On the other hand 100 g weight and percentage of seeds remained on 6.7 mm sieve showed significantly positive correlations [r=0.7488** for soypaste and source soybean and r=0.7874** for black testa (large) soybean when 100 seed weight was $20{\sim}30g$. Based on hilum color and/or appearance, 76% of brand soybeans collected (more than 90% in yellow testa soybeans) were found to be mixed more than 10% with other cultivars or landraces. Foreign materials such as sand, piece of clothe, wood piece, dead insects, other soybeans were found in 20% of brand soybeans. Average test weight of brand soybeans was 762g $L^{-1}$ with a range of $645{\sim}820g\;L^{-1}$. Soybeans from local markets were as good as brand soybeans in 100 seed weight, uniformity of seeds, weight of foreign materials and test weight.