• Title/Summary/Keyword: environmental uncertainties

Search Result 449, Processing Time 0.031 seconds

Utilization of health insurance data in an environmental epidemiology

  • Ha, Jongsik;Cho, Seongkyung;Shin, Yongseung
    • Environmental Analysis Health and Toxicology
    • /
    • v.30
    • /
    • pp.12.1-12.7
    • /
    • 2015
  • Objectives In South Korea, health insurance data are used as material for the health insurance of national whole subject. In general, health insurance data could be useful for estimating prevalence or incidence rate that is representative of the actual value in a population. The purpose of this study was to apply the concept of episode of care (EoC) in the utilization of health insurance data in the field of environmental epidemiology and to propose an improved methodology through an uncertainty assessment of disease course and outcome. Methods In this study, we introduced the concept of EoC as a methodology to utilize health insurance data in the field of environmental epidemiology. The characterization analysis of the course and outcome of applying the EoC concept to health insurance data was performed through an uncertainty assessment. Results The EoC concept in this study was applied to heat stroke (International Classification of Disease, 10th revision, code T67). In the comparison of results between before and after applying the EoC concept, we observed a reduction in the deviation of daily claims after applying the EoC concept. After that, we categorized context, model, and input uncertainty and characterized these uncertainties in three dimensions by using uncertainty typology. Conclusions This study is the first to show the process of constructing episode data for environmental epidemiological studies by using health insurance data. Our results will help in obtaining representative results for the processing of health insurance data in environmental epidemiological research. Furthermore, these results could be used in the processing of health insurance data in the future.

A Study on Comparison of Risk Estimates Among Various Exposure Scenario of Several Volatile Organic Compounds in Tap Water (음용수중 휘발성 유기오염물질의 노출경로에 따른 위해도 추정치 비교연구)

  • Chung, Yong;Shin, Dong-Chun;Kim, Jong-Man;Yang, Ji-Yeon;Park, Seong-Eun
    • Environmental Analysis Health and Toxicology
    • /
    • v.10 no.1_2
    • /
    • pp.21-35
    • /
    • 1995
  • Risk assessment processes, which include processes for the estimation of human cancer potency using animal bioassay data and calculation of human exposure, entail uncertainties. In the exposure assessment process, exposure scenarios with various assumptions could affect the exposure amount and excess cancer risk. We compared risk estimates among various exposure scenarios of vinyl chloride, trichloroethylene and tetrachloroethylene in tap water. The contaminant concentrations were analyzed from tap water samples in Seoul from 1993 to 1994. The oral and inhalation cancer potencies of the contaminants were estimated using multistage, Weibull, lognormal, and Mantel-Bryan model in TOX-RISK computer software. In the first case, human excess cancer risk was estimated by the US EPA method used to set the MCL(maximum contaminant level). In the second and third case, the risk was estimated for multi-route exposure with and without adopting Monte-Carlo simulation, respectively. In the second case, exposure input parameters and cancer potencies used probability distributions, and in the third case, those values used point estimates(mean, and maximum or 95% upper-bound value). As a result, while the excess cancer risk estimated by US EPA method considering only direct ingestion tended to be underestimated, the risk which was estimated by considering multi-route exposure without Monte-Carlo simulation and then using the maximum or 95% upper-bound value as input parameters tended to be overestimated. In risk assessment for volatile organic compounds, considering multi-route exposure with adopting Monte-Carlo analysis seems to provide the most reasonable estimations.

  • PDF

A Study on the Development of Soil-based PTMs for Analysis of BTEX (BTEX 분석용 토양 숙련도 표준시료(PTMs) 개발에 관한 연구)

  • Lee, Minhyo;Lee, Guntaek;Lee, Bupyoel;Lee, Wonseok;Kim, Gumhee;Hong, Sukyoung
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.5
    • /
    • pp.15-25
    • /
    • 2013
  • In this study, two kinds of soil-based proficiency testing materials (PTMs), NICE-012L and NICE-012R were prepared and certified for Benzen, Toluene, Etylbenzene and Xylene with evaluation of uncertainties. In order to analyse BTEX (Benzen Toluene Etylbenzene Xylene) for the candidate materials, GC/MS was used after pretreatment according to methods of soil analysis by Ministry of Environment. For the homogeneity test among bottles in terms of candidate materials, ISO 13528 and IUPAC Protocol were used and according to the result, both candidate materials showed sufficient homogeneity. Also, the stability test over the candidate materials was accessed according to the ISO Guide 35 by classifying short-term and long-term stability and the result showed that both candidate materials showed decent stability. The reference values of the two candidate materials depending on BTEX components were derived from the average of the 11 samples that were used for verification of the samples' homogeneity. Uncertainty of measurement was combined by uchar that was caused by a characteristic value, $u_{bb}$ that was caused by between-bottle homogeneity, and $u_{stab}$ that was caused by stability, and then combined uncertainty ($u_{PTM}$) was multiplied to the coverage factor (k) derived from the effective degree of freedom from each factor that leads to expanded uncertainty (U) in about 95% of confidence level. The proficiency testing materials developed through this study were supplied to National Institute of Environmental Research (NIER) and utilized as an external proficiency testing materials for evaluating analysis capacity of soil agencies with specialty in terms of soil analysis approved by Minister of Environment.

Estimation Method of Creep Coefficient in Concrete Structures (콘크리트 구조물에서 크리프 계수 추정 방법)

  • Park, Jong-Bum;Park, Jung-Il;Chang, Sung-Pil;Cho, Jae-Yeol
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.5
    • /
    • pp.619-628
    • /
    • 2009
  • To predict the time-dependent behavior of concrete structures, the models which describe the time-dependent characteristics of concrete, i.e. creep and shrinkage are required. However, there must be significant differences between the displacements that are obtained using the given creep and shrinkage models and the measured displacements, because of the uncertainties of creep and shrinkage model itself and those of environmental condition. There are some efforts to reduce these error or uncertainties by using the model which are obtained from creep test for the concrete in construction site. Nevertheless, the predicted values from this model may be still different from the actual values due to the same reason. This study aimed to propose a method of estimating the creep coefficient from the measured displacements of concrete structure, where creep model uncertainty factor was considered as an error factor of creep model. Numerical validation for double composite steel box and concrete beam showed desirable feasibility of the presented method. Consideration of the time-dependent characteristics of creep as one of the error factors make it possible to predict long-term behaviors of concrete structures more realistically, especially long-span PSC girder bridges and concrete cable-stayed bridges of which major problem is the geometry control under construction and maintenance.

Development of climate change uncertainty assessment method for projecting the water resources (기후변화에 따른 수자원 전망의 불확실성 평가기법 개발)

  • Lee, Moon-Hwan;So, Jae-Min;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.8
    • /
    • pp.657-671
    • /
    • 2016
  • It is expected that water resources will be changed spatially and temporally due to the global climate change. The quantitative assessment of change in water availability and appropriate water resources management measures are needed for corresponding adaptation. However, there are large uncertainties in climate change impact assessment on water resources. For this reason, development of technology to evaluate the uncertainties quantitatively is required. The objectives of this study are to develop the climate change uncertainty assessment method and to apply it. The 5 RCMs (HadGEM3-RA, RegCM4, MM5, WRF, and RSM), 5 statistical post-processing methods (SPP) and 2 hydrological models (HYM) were applied for evaluation. The results of the uncertainty analysis showed that the RCM was the largest sources of uncertainty in Spring, Summer, Autumn (29.3~68.9%), the hydrological model was the largest source of uncertainty in Winter (46.5%). This method can be possible to analyze the changes in the total uncertainty according to the specific RCM, SPP, HYM model. And then it is expected to provide the method to reduce the total uncertainty.

Applicability of Robust Decision Making for a Water Supply Planning under Climate Change Uncertainty (기후변화 불확실성하의 용수공급계획을 위한 로버스트 의사결정의 적용)

  • Kang, Noel;Kim, Young-Oh;Jung, Eun-Sung;Park, Junehyeong
    • Journal of Climate Change Research
    • /
    • v.4 no.1
    • /
    • pp.11-26
    • /
    • 2013
  • This study examined the applicability of robust decision making (RDM) over standard decision making (SDM) by comparing each result of water supply planning under climate change uncertainties for a Korean dam case. RDM determines the rank of alternatives using the regret criterion which derives less fluctuating alternatives under the risk level regardless of scenarios. RDM and SDM methods were applied to assess hypothetic scenarios of water supply planning for the Andong dam and Imha dam basins. After generating various climate change scenarios and six assumed alternatives, the rank of alternatives was estimated by RDM and SDM respectively. As a result, the average difference in the rank of alternatives between RDM and SDM methods is 0.33~1.33 even though the same scenarios and alternatives were used to be ranked by both of RDM and SDM. This study has significance in terms of an attempt to assess a new approach to decision making for responding to climate change uncertainties in Korea. The effectiveness of RDM under more various conditions should be verified in the future.

Cost-effective Investigation on Contaminated Land and Assessment of Measurement Uncertainty (오염토양의 효율적 조사기법과 측정불확도의 평가방법)

  • 이종천
    • Economic and Environmental Geology
    • /
    • v.37 no.1
    • /
    • pp.49-59
    • /
    • 2004
  • The concectration and distribution of contaminants obtained from a contaminated land investigation or an environmental geochemistry survey constitutes the basis of a decision-making process on environmental policies or of scientific researches. As the quality of data determines the reliability of the result, the investigation plan should be adjusted according to the purpose of the investigation. In general, the effort to improve the data quality had been focused mainly on the QA/QC procedures in laboratories. The rapid progress of analytical instrument has also contributed toward improving the analytical precision to a sacrificable degree. Nevertheless, in many cases, it is not the analytical precision that needs improvement for the better precision of overall measurement process: it is rather during the sampling process in the field that is responsible for the poor precision. To assess the data quality on a measured value, ISO recommends to provide information on "measurement uncertainty" along with the measured value. The measurement uncertainty in an environmental measurement context can be explained as the statistical number that expresses the degree of the uncertainty stemming from the sampling and analytical procedures. There is a cost involved in order to improve the precision of sampling and analytical methods so as to decrease the degree of measurement uncertainty. The economical point of compromise in an investigation planning can be achieved when the allowable degree of uncertainty has been set before-hand. The investigation can then be planned accordingly not to exceed the uncertainty limit. Furthermore, if the measurement uncertainty estimated from the preliminary investigation can be separated into sampling and analytical uncertainties, it can be used as a criterion where the resources for the investigation should be allotted cost-effectively to reinforce the weakest link of the whole investigation process. This paper aims to present a method of estimating the level of measurement uncertainty of a measured contamination concentration at a site used as an example and to show how the estimated uncertainty can be applied to serve the particular purpose of an investigation.

Development of the CAP Water Quality Model and Its Application to the Geum River, Korea

  • Seo, Dong-Il;Lee, Eun-Hyoung;Reckhow, Kenneth
    • Environmental Engineering Research
    • /
    • v.16 no.3
    • /
    • pp.121-129
    • /
    • 2011
  • The completely mixed flow and plug flow (CAP) water quality model was developed for streams with discontinuous flows, a condition that often occurs in low base flow streams with in-stream hydraulic structures, especially during dry seasons. To consider the distinct physical properties of each reach effectively, the CAP model stream network can include both plug flow (PF) segments and completely mixed flow (CMF) segments. Many existing water quality models are capable of simulating various constituents and their interactions in surface water bodies. More complicated models do not necessarily produce more accurate results because of problems in data availability and uncertainties. Due to the complicated and even random nature of environmental forcing functions, it is not possible to construct an ideal model for every situation. Therefore, at present, many governmental level water quality standards and decisions are still based on lumped constituents, such as the carbonaceous biochemical oxygen demand (CBOD), the total nitrogen (TN) or the total phosphorus (TP). In these cases, a model dedicated to predicting the target concentration based on available data may provide as equally accurate results as a general purpose model. The CAP model assumes that its water quality constituents are independent of each other and thus can be applied for any constituent in waters that follow first order reaction kinetics. The CAP model was applied to the Geum River in Korea and tested for CBOD, TN, and TP concentrations. A trial and error method was used for parameter calibration using the field data. The results agreed well with QUAL2EU model predictions.

Phytoremediation of Organophosphorus and Organochlorine Pesticides by Acorus gramineus

  • Chuluun, Buyan;Iamchaturapatr, Janjit;Rhee, Jae-Seong
    • Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.226-236
    • /
    • 2009
  • The performance of phytoremediation has proven effective in the removal of nutrients and metals from aqueous systems. However, little information is available regarding the behavior of pesticides and their removal pathways in aquatic environments involving plant-uptake. A detailed understanding of the kinetics of pesticide removal by plants and information on compound/plant partition coefficients can lead to an effective design of the phytoremediation process for anthropogenic pesticide reduction. It was determined that the reduction rates of four organophosphorus (OP) and two organochlorine (OC) pesticides (diazinon, fenitrothion, malathion, parathion, dieldrin, hexachlorobenzene [HCB]) could be simulated by first-order reaction kinetics. The magnitude of k was dependent on the pesticide species and found within the range of 0.409 - 0.580 $d^{-1}$. Analytical results obtained by mass balances suggested that differential chemical stability, including diversity of molecular structure, half-lives, and water solubility, would greatly influence the removal mechanisms and pathways of OPs and OCs in a phytoreactor (PR). In the case of OP pesticides, plant accumulation was an important pathway for the removal of fenitrothion and parathion from water, while pesticide sorption in suspended matter (SM) was an important pathway for removal of dieldrin and HCB. The magnitude of the pesticide migration factor (${\Large M}_p^{pesticide}$) is a good indication of determining the tendency of pesticide movement from below- to above-ground biomass. The uncertainties related to the different phenomena involved in the laboratory phyto-experiment are also discussed.

Analysis of Domestic and Foreign Contributions using DDM in CMAQ during Particulate Matter Episode Period of February 2014 in Seoul (2014년 2월 서울의 고농도 미세먼지 기간 중에 CMAQ-DDM을 이용한 국내외 기여도 분석)

  • Kim, Jong-Hee;Choi, Dae-Ryun;Koo, Youn-Seo;Lee, Jae-Bum;Park, Hyun-Ju
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.1
    • /
    • pp.82-99
    • /
    • 2016
  • This study was carried out to understand the regional contribution of Particulate Matter (PM) emissions from East Asia ($82^{\circ}{\sim}149^{\circ}E$, $18^{\circ}{\sim}53^{\circ}N$) to Seoul during high concentration period in February 2014. The Community Multi-scale Air Quality (CMAQ) version 5.0.2 with Decoupled Direct Method (DDM) was used to analyze levels of contributions over Seoul. In order to validate model performance of the CMAQ, predicted PM and its chemical species concentrations were compared to observations in China and Seoul. Model predictions could depict the daily and hourly variations of observed PM. The calculated PM concentrations, however, had a tendency of underestimation. The discrepancies are due to uncertainties of meteorological data, emission inventories and CMAQ model itself. The high PM concentration in Seoul was induced by stationary anticyclone over the West Coast of Korea during 24 to 27 February. The DDM in CMAQ was used to analyze the contributions of emissions from East Asia on Seoul during this PM episode. $PM_{10}$ concentration in Seoul is contributed by 39.77%~53.19% from China industrial and urban region, 15.37%~37.10% from South Korea, and 9.03%~18.05% North Korea. These indicate that $PM_{10}$ concentrations in Seoul during the episode period are dominated by long-range transport from China region as well as domestic sources. It was also found that the largest contribution region in China were Shandong peninsula during the PM event period.