• Title/Summary/Keyword: environmental thermal effects

Search Result 426, Processing Time 0.027 seconds

The Analysis on Maximum Output Power Characteristics of Crystalline Silicon Photovoltaic Module by Change of Environmental Effects (환경변화 요인에 따른 결정질 실리콘 태양전지모듈의 최대출력 특성 분석)

  • Kang, Gi-Hwan;Kim, Kyung-Soo;Park, Chi-Hong;Yu, Gwon-Jong;Ahn, Hyung-Keun;Han, Deuk-Young
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.23-28
    • /
    • 2007
  • In this study, we analyzed the maximum output power characteristics of crystalline silicon photovoltaic module by change of environmental effects. The electrical, optical and thermal property of PV modules were investigated during outdoor test period about 70 days. There was a fluctuation in maximum output power by change in transmittance caused by environment effects like rain, snow and dust. The effects of external environmental change were analyzed using climate data. Also local thermal temperature variation and transmittance imbalance on surface of PV module which might lead degradation of constituent material were detected using infrared camera. The further analysis is describe in the following paper.

An Experimental Study on the Thermal Insulation of the Linin Fabrics (의복 안감의 보온성에 관한 실험적 연구)

  • Jeong Young Ok;Choi Jeong Wha
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.8 no.1
    • /
    • pp.1-11
    • /
    • 1984
  • An attempt was made to determine individual thermal resistances of 2-lining fabrics ad 4-outer fabrics for Korean-styled clothes, and 4-lining fabrics ad 5-outer fabrics for Western-styled clothes at $19^{\circ}C$ and $24^{\circ}C$. The thermal insulation effects for different lining fabrics in Korean and Western-styled clothes were deduced in determining heart rate, rectal temperature, mean skin temperature and microclimates of subjects. The subjects were dressed experimental clothing which were made of lining and outer fabrics in question, and seated in an environmental chamber during the experiment. 1. Thermal resistances of lining fabrics : For Korean-styled clothes. nylon sheer is larger than unzosa. For Western-styled clothes, rayon, acetate, nylon(taffeta) and kalkali in that order. 2. Thermal resistances of lining fabrics combined : with outer fabrics: For Korean-styled clothes. the measured value is larger than the one of simple aggregate value. But in the case of Western-styled clothes, the measured value is smaller than simple aggregate value. 3. The effects of lining on the thermal insulation of the whole clothing: In case when subjects wore unlimited number of underwear, no matter what lining fabrics were used in Korean and Western-styled clothes less thermal insulation effects were indicated. For the case, however, if subjects wore only limited underwear, there are significant differences of thermal insulation between experimental clothings.

  • PDF

Numerical simulation of a regenerative thermal oxidizer for volatile organic compounds treatment

  • Hao, Xiaowen;Li, Ruixin;Wang, Jiao;Yang, Xinfei
    • Environmental Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.397-405
    • /
    • 2018
  • As regulations governing the control of volatile organic compounds (VOCs) have become increasingly stringent in China, regenerative thermal oxidizers (RTOs) have been more frequently applied in medium- and high-concentration VOCs treatments. However, due to the lack of existing RTO-related research, experience remains a dominant factor for industrial application. This paper thus aimed to establish a model for industrial RTOs, using a transient simulation method and thermal equilibrium model to simulate the internal velocities and temperature distributions of an RTO across multiple cycles. A comparison showed an error of less than 5% between most correlating simulated and experimental measurement points, verifying that the simulation method was accurate. After verification, the velocity and temperature fields inside the RTO were simulated to study the uniformity of temperature and velocity within the packed beds: both fields displayed high uniformity after gas flowed through the honeycomb regenerator. The effects of air volume, VOCs concentrations, and valve switching times on the oxidation chamber temperature, RTO outlet temperature, and thermal efficiency (as well as their averages) were studied. The VOCs removal rate in this study was constantly above 98%, and the average thermal efficiency reached 90%.

An Experimental Study of Environmental Effects on the Rolling Resistance of Bearing Surfaces Coated by Soft Metallic Films (연금속 박막이 코팅된 베어링 표면의 구름 저항 거동에 미치는 분위기의 영향에 대한 실험적 고찰)

  • 양승호;공호성;윤의성;김대은
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.47-54
    • /
    • 1998
  • An experimental study was performed to discover the effect of environmental conditions on the rolling resistance behavior of pure silver and lead coated 52100 bearing steel. Pure silver and lead coating were produced by a thermal evaporation coating method. Experiments using a thrust ball bearing-typed rolling test-rig were performed under vacuum, dry air and controlled humidity conditions. Results showed that agglomeration of particles were prevented in vacuum environment and as it showed low and stable rolling resistance by shakedown phenomena. Also, humidity relates closely to the agglomeration of particles and increased the rolling resistance after the failure of coated layer.

  • PDF

Modeling Environmental Effects on Detection Performances for Variable Depth Sonars in the East Sea of Korea

  • Na, Young-Nam;Cho, Chang-Bong;Han, Sang-Kyu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.2E
    • /
    • pp.68-73
    • /
    • 2004
  • In the East Sea of Korea, the ocean environments are known to have strong variations in space and time. Their effects are very important factors in sound propagation and sonar performance. We consider the environmental factors such as eddies and thermal fronts affecting underwater sound propagation and target detection performance by sonars. Unfortunately, however, the detailed structure of eddies is usually difficult to understand by using the sea surface temperatures from infrared images alone or a few profiles from the CTD (conductivity, temperature and depth) castings. The temperature fields of eddy and thermal front are simulated with typical patterns of those obtained from several observations. This paper delivers the overviews of environments and acoustic models with their simulation results on sonar performance.

Response of integral abutment bridges under a sequence of thermal loading and seismic shaking

  • Tsinidis, Grigorios;Papantou, Maria;Mitoulis, Stergios
    • Earthquakes and Structures
    • /
    • v.16 no.1
    • /
    • pp.11-28
    • /
    • 2019
  • This article investigates the response of Integral Abutment Bridges (IAB) when subjected to a sequence of seasonal thermal loading of the deck followed by ground seismic shaking in the longitudinal direction. Particular emphasis is placed on the effect of pre-seismic thermal Soil-Structure Interaction (SSI) on the seismic performance of the IAB, as well as on the ability of various backfills configurations, to minimize the unfavorable SSI effects. A series of two-dimensional numerical analyses were performed for this purpose, on a complete backfill-integral bridge-foundation soil system, subjected to seasonal cyclic thermal loading of the deck, followed by ground seismic shaking, employing ABAQUS. Various backfill configurations were investigated, including conventional dense cohesionless backfills, mechanically stabilized backfills and backfills isolated by means of compressive inclusions. The responses of the investigated configurations, in terms of backfill deformations and earth pressures, and bridge resultants and displacements, were compared with each other, as well as with relevant predictions from analyses, where the pre-seismic thermal SSI effects were neglected. The effects of pre-seismic thermal SSI on the seismic response of the coupled IAB-soil system were more evident in cases of conventional backfills, while they were almost negligible in case of IAB with mechanically stabilized backfills and isolated abutments. Along these lines, reasonable assumptions should be made in the seismic analysis of IAB with conventional sand backfills, to account for pre-seismic thermal SSI effects. On the contrary, the analysis of the SSI effects, caused by thermal and seismic loading, can be disaggregated in cases of IAB with isolated backfills.

Effects of Hydro-thermal Reaction Temperature on Anaerobic Biodegradability of Piggery Manure Hydrolysate

  • Kim, Ho;Jeon, Yong-Woo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.6
    • /
    • pp.602-609
    • /
    • 2015
  • In order to enhance a biogas production by the hydro-thermal pre-treatment of piggery manure, the effects of hydro-thermal reaction temperature at thermal hydrolysis of piggery manure on the methane potential and anaerobic biodegradability of thermal hydrolysate were analyzed. The increase of hydro-thermal reaction temperature from $170^{\circ}C$ to $220^{\circ}C$ caused the enhancement of hydrolysis efficiency, and most of organic matters were present in soluble forms. However, the methane potentials ($B_u-TCOD$) of hydrolysate were decreased from 0.239 to $0.188Nm^3kg^{-1}-TCOD_{added}$ by increasing hydro-thermal reaction temperature from $170^{\circ}C$ to $220^{\circ}C$, and also the anaerobic biodegradability (DTCOD) decreased from 74.6% to 58.6% with increase of hydro-thermal reaction temperature. The increase of hydro-thermal reaction temperature from $170^{\circ}C$ to $220^{\circ}C$ resulted in the decrease of easily biodegradable organic matter content, while persistent organic matter contents increased.

On the thermal buckling response of FG Beams using a logarithmic HSDT and Ritz method

  • Kadda Bouhadjeb;Abdelhakim Kaci;Fouad Bourada;Abdelmoumen Anis Bousahla;Abdelouahed Tounsi;Mohammed A. Al-Osta;S.R. Mahmoud;Farouk Yahia Addou
    • Geomechanics and Engineering
    • /
    • v.37 no.5
    • /
    • pp.453-465
    • /
    • 2024
  • This paper presents a logarithmic shear deformation theory to study the thermal buckling response of power-law FG one-dimensional structures in thermal conditions with different boundary conditions. It is assumed that the functionally graded material and thermal properties are supposed to vary smoothly according to a contentious function across the vertical direction of the beams. A P-FG type function is employed to describe the volume fraction of material and thermal properties of the graded (1D) beam. The Ritz model is employed to solve the thermal buckling problems in immovable boundary conditions. The outcomes of the stability analysis of FG beams with temperature-dependent and independent properties are presented. The effects of the thermal loading are considered with three forms of rising: nonlinear, linear and uniform. Numerical results are obtained employing the present logarithmic theory and are verified by comparisons with the other models to check the accuracy of the developed theory. A parametric study was conducted to investigate the effects of various parameters on the critical thermal stability of P-FG beams. These parameters included support type, temperature fields, material distributions, side-to-thickness ratios, and temperature dependency.

Effect of environmental conditions on the stock structure and abundance of the Pacific saury, Cololabis saira in the Tsushima Warm Current region (대마난류계 꽁치의 자원구조와 풍도에 미치는 해양환경의 영향)

  • Gong, Yeong;Seo, Yeong-Sang
    • Journal of Environmental Science International
    • /
    • v.13 no.5
    • /
    • pp.449-467
    • /
    • 2004
  • Interannual and decadal scale changes in body size of Pacific saury, catch and catch per unit effort were examined to investigate the environmental effects on the stock structure and abundance in the Tsushima Warm Current region. Interannual changes in thermal conditions are responsible for the different occurrence (catch) rates of sized group of the fish. Changes in body size due to environmental variables lead the stock to be homogeneous during the period of high abundance, while one of the reminder cohorts supports the stock during the period of low level of abundance. Migration circuits of two cohorts of saury stock are hypothesized on the basis of short life span and spatio-temporal changes of the stock structure in normal environmental conditions. Changes in upper ocean structure and production cycles by the decadal scale climate changes lead changes in stock structure and recruitment, resulting in the fluctuation of saury abundance. Hypothesized mechanism of the effects of climate changes on stock structure and abundance is illustrated on the basis of changes in thermal regime and production cycle.

Survivability assessment of Viton in safety-related equipment under simulated severe accident environments

  • Ryu, Kyungha;Song, Inyoung;Lee, Taehyun;Lee, Sanghyuk;Kim, Youngjoong;Kim, Ji Hyun
    • Nuclear Engineering and Technology
    • /
    • v.50 no.5
    • /
    • pp.683-689
    • /
    • 2018
  • To evaluate equipment survivability of the polymer Viton, used in sealing materials, the effects of its thermal degradation were investigated in severe accident (SA) environment in a nuclear power plant. Viton specimens were prepared and thermally degraded at different SA temperature profiles. Changes in mechanical properties at different temperature profiles in different SA states were investigated. The thermal lag analysis was performed at calculated convective heat transfer conditions to predict the exposure temperature of the polymer inside the safety-related equipment. The polymer that was thermally degraded at postaccident states exhibited the highest change in its mechanical properties, such as tensile strength and elongation.