• Title/Summary/Keyword: environmental technology verification

Search Result 241, Processing Time 0.03 seconds

A Study on Influence Factors for Tunnel Collapse Risk Analysis using Delphi Method (델파이 기법을 활용한 터널 붕괴 위험도 분석을 위한 영향인자 도출에 관한 연구)

  • Kim, Jeong Heum;Kim, Chang Yong;Lee, Seung Soo;Lee, Jun Hwan
    • The Journal of Engineering Geology
    • /
    • v.27 no.2
    • /
    • pp.165-172
    • /
    • 2017
  • This research aims to define influence factors to perform an optimized section design and evaluate tunnel collapse risk during construction using Delphi technique. A total of five upper classification systems were constructed through literature review, pervious research analysis, and brainstorming of expert group for establishing influence factors. The $1^{st}$, $2^{nd}$, and $3^{rd}$ Delphi survey process was proceeded by panel group which is consisted 21 experts to prevent errors and bias in the expert judgement process. In Delphi $1^{st}$ survey, a total of 22 influence factors candidates were derived through open-ended questionnaire. In Delphi $2^{nd}$ survey, questionnaire was proceeded based on 7-point Likert scale method. In order to verify the validity, CVR (Content Validity Ration) analysis was performed to exclude inappropriate candidates. In the $3^{rd}$ survey, verification of influence factors was proceeded once more with the result of $2^{nd}$ survey, and lastly, a total of 14 influence factors was derived by CVR and COV (Content Validity Ration) analysis for response of experts.

Closed Static Chamber Methods for Measurement of Methane Fluxes from a Rice Paddy: A Review (벼논 메탄 플럭스 측정용 폐쇄형 정적 챔버법: 고찰)

  • Ju, Okjung;Kang, Namgoo;Lim, Gapjune
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.2
    • /
    • pp.79-91
    • /
    • 2020
  • Accurate assessment of greenhouse gas emissions is a cornerstone of every climate change response study, and reliable assessment of greenhouse gas emission data is being used as a practical basis for the entire climate change prediction and modeling studies. Essential, fundamental technologies for estimating greenhouse gas emissions include an on-site monitoring technology, an evaluation methodology of uncertainty in emission factors, and a verification technology for reductions. The closed chamber method is being commonly used to measure gas fluxes between soil-vegetation and atmosphere. This method has the advantages of being simple, easily available and economical. This study presented the technical bases of the closed chamber method for measuring methane fluxes from a rice paddy. The methane fluxes from rice paddies occupy the largest portion of a single source of greenhouse gas in the agricultural field. We reviewed the international and the domestic studies on automated chamber monitoring systems that have been developed from manually operated chambers. Based on this review, we discussed scientific concerns on chamber methods with a particular focus on quality control for improving measurement reliability of field data.

Evaluation of Flood Regulation Service of Urban Ecosystem Using InVEST mode (InVEST 모형을 이용한 도시 생태계의 홍수 조절서비스 평가)

  • Lee, Tae-ho;Cheon, Gum-sung;Kwon, Hyuk-soo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.25 no.6
    • /
    • pp.51-64
    • /
    • 2022
  • Along with the urbanization, the risk of urban flooding due to climate change is increasing. Flood regulation, one of the ecosystem services, is implemented in the different level of function of flood risk mitigation by the type of ecosystem such as forests, arable land, wetlands etc. Land use changes due to development pressures have become an important factor in increasing the vulnerability by flash flood. This study has conducted evaluating the urban flood regulation service using InVEST UFRM(Urban Flood Risk Model). As a result of the simulation, the potential water retention by ecosystem type in the event of a flash flood according to RCP 4.5(10 year frequency) scenario was 1,569,611 tons in urbanized/dried areas, 907,706 tons in agricultural areas, 1,496,105 tons in forested areas, 831,705 tons in grasslands, 1,021,742 tons in wetlands, and 206,709 tons in bare areas, the water bodies was estimated to be 38,087 tons. In the case of more severe 100-year rainfall, 1,808,376 tons in urbanized/dried areas, 1,172,505 tons in agricultural areas, 2,076,019 tons in forests, 1,021,742 tons in grasslands, 47,603 tons in wetlands, 238,363 tons in bare lands, and 52,985 tons in water bodies. The potential economic damage from flood runoff(100 years frequency) is 122,512,524 thousand won in residential areas, 512,382,410 thousand won in commercial areas, 50,414,646 thousand won in industrial areas, 2,927,508 thousand won in Infrastructure(road), 8,907 thousand won in agriculture, Total of assuming a runoff of 50 mm(100 year frequency) was estimated at 688,245,997 thousand won. In a conclusion. these results provided an overview of ecosystem functions and services in terms of flood control, and indirectly demonstrated the possibility of using the model as a tool for policy decision-making. Nevertheless, in future research, related issues such as application of models according to various spatial scales, verification of difference in result values due to differences in spatial resolution, improvement of CN(Curved Number) suitable for the research site conditions based on actual data, and development of flood damage factors suitable for domestic condition for the calculation of economic loss.

A Study on the Chlorobenzene and Chlorophenol Behavior in Plasma Type Pyrolysis/Gasfication/Melting Process (플라즈마 방식 열분해 가스화용융시설의 공정별 클로로벤젠 및 클로로페놀 배출거동에 관한 연구)

  • Shin, Chan-Ki;Shin, Dae-Yun;Kim, Ki-Heon;Son, Ji-Whan
    • Journal of environmental and Sanitary engineering
    • /
    • v.22 no.2
    • /
    • pp.9-20
    • /
    • 2007
  • The incineration process has commonly used for wastes amount reduction and thermal treatments of pollutants as the technologies accumulated. However, the process is getting negative public images owing to matter of hazardous pollutants emission. Specially dioxins became a main issue and were mostly emitted from municipal solid wastes incineration. In this reason, pyrolysis/gasification/melting process is presented as an alternative of incineration process. The pyrolysis/gasification/melting process, a novel technology, is middle of verification of commercial plant and development of technologies in Korea. But the survey about the pollutant emission from the process, and background data in these facilities is necessary. So in this survey, t is investigated that the behavior of chlorobenzenes and chlorophenols in plasma type pyrolysis/gasification/melting plant of pilot scale. We investigated discharging behavior of each phase of chlorobenzene through each process in the plsasma type pyrolysis/gasification/melting process. From this result, it was found that about 99 percent of particle-phase chlorobenzene was removed, but on the other hand gas-phase chlorobenzene was increased by about 600 percent through heat exchanger, flue gas cooling, system and semi dry absorption bag filter(SDA/BF). Also, this investigation presented that di-chlorobenzene(DCB) tri-chlorobenzene(TCB), tetra-chlorobenzene(TeCB), penta-chlorobenzene (PCB), except mono-chlorobenzene(MCB) and hexa-chlorobenzene(HCB) were increased through the flue gas cooling system and the semi dry absorption bag filter(SDA/BF). It was investigated that concentration of particle-phase chlorophenol was decreased by about 66 percent, but on the other hand, concentration of gas-phase chlorophenol was increased by about 170 percent through heat exchanger, flue gas cooling system, and semi dry absorption bag filter(SDA/BF). Also, it was found that di-chlorophenol(DCP), tri-chlorophenol(TCP), and penta-chlorophenol(PCP) were increased through the flue gas cooling system, and the semi dry absorption bag filter(SDA/BF). It can be considered that small-scale pilot facility and short investigation period might cause the concentration increase through the flue gas cooling system and the semi dry absorption bag filter(SDA/BF). A further study on real-scale pilot facility and accurate investigation may be required.

Application of AGNPS Model for Nitrogen and Phosphorus Load in a Stream Draining Small Agricultural Watersheds (소규모 농업유역에서 질소와 인의 하천 부하에 대한 AGNPS 모형의 적용)

  • Kim, Min-Kyeong;Choi, Yun-Yeong;Kim, Bok-Jin;Lim, Jun-Young;Chung, Jong-Bae
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.3
    • /
    • pp.192-200
    • /
    • 2001
  • The event-based agricultural non-point source(AGNPS) pollution model was applied to estimate the loads of nitrogen and phosphorus in a stream draining small agricultural watersheds. Calibration and verification of the model were performed using observed data collected from rainfall events in the Imgo watersheds during 1997-1998. Parameter calibrations were made for the runoff curve number. The peak flow volumes in the watersheds were well reproduced by the modified model. Average deviation between observed and simulated values was 10%, and this match was confirmed by the coefficient of efficiency value of 0.97. The deviations tended to increase as the peak flows increased. The simulated total N concentrations in the stream water were fairly close to the measured values, and the coefficient of efficiency in the estimation was 0.93. However, there were relatively large variations between calculated and observed values of total P concentration, and the coefficient of efficiency in the estimation was 0.74. Any inaccuracies that arise in estimating runoff flow and nutrient loading can not be explained exactly and further adjustment and refinements may be needed for application of AGNPS in agricultural watersheds. With this restrictions in mind, it can be concluded that AGNPS can provide realistic estimates of nonpoint source nutrient yields.

  • PDF

Evaluation of Ground Thermal Conductivity by Performing In-Situ Thermal Response test (TRT) and CFD Back-Analysis (현장 열응답 시험(TRT)과 CFD 역해석을 통한 지반의 열전도도 평가)

  • Park, Moonseo;Lee, Chulho;Park, Sangwoo;Sohn, Byonghu;Choi, Hangseok
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.12
    • /
    • pp.5-15
    • /
    • 2012
  • In this study, a series of CFD (Computational Fluid Dynamics) numerical analyses were performed in order to evaluate the thermal performance of six full-scale closed-loop vertical ground heat exchangers constructed in a test bed located in Wonju. The circulation HDPE pipe, borehole and surrounding ground formation were modeled using FLUENT, a finite-volume method (FVM) program, for analyzing the heat transfer process of the system. Two user-defined functions (UDFs) accounting for the difference in the temperatures of the circulating inflow and outflow fluid and the variation of the surrounding ground temperature with depth were adopted in the FLUENT model. The relevant thermal properties of materials measured in laboratory were used in the numerical analyses to compare the thermal efficiency of various types of the heat exchangers installed in the test bed. The simulation results provide a verification for the in-situ thermal response test (TRT) data. The CFD numerical back-analysis with the ground thermal conductivity of 4 W/mK yielded better agreement with the in-situ thermal response tests than with the ground thermal conductivity of 3 W/mK.

Estimation of Consolidation Characteristics of Soft Ground in Major River Mouth (주요 강하구 연약지반의 압밀 특성 평가)

  • Lee, JunDae;Kwon, YoungChul;Bae, WooSeok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.2
    • /
    • pp.69-79
    • /
    • 2019
  • The coastal area forms various sedimentary layers according to the environmental conditions such as the topography and geological features of the upper region of the river, ocean currents, and river mouth. Therefore, identifying the characteristics of the marine clay deposited in the coastal area plays a key role in the investigation of the formation of soft ground. In general, alluvial grounds are formed by a variety of factors such as changes in topography and natural environment, they have very diverse qualities depending on the deposited region or sedimentation conditions. The most important thing for the construction of social infrastructures in soft ground areas is economical and efficient treatment of soft ground. In this study, the author collected data from diverse laboratory and field tests on five areas in western and southern offshore with relatively high reliability, and then statistically analyzed them, thereby presenting standard constants for construction design. Correlation between design parameters such as over consolidation ratio, preconsolidation pressure was analyzed using linear and non-linear regression analyses. Also, proposed distribution characteristics of design parameters in consideration of each region's uncertainty through statistical analyses such as normality verification, outlier removal.

Awareness of Urban Environment and LID for Expanding LID Application (LID 적용확대를 위한 시민의 도시환경 및 LID 인식)

  • Kim, Youngman;Kim, Lee-hyung
    • Journal of Wetlands Research
    • /
    • v.21 no.1
    • /
    • pp.27-33
    • /
    • 2019
  • The future water management needs decentralization of facilities, diversity of technology and integration of management to overcome the waste of financial resources and increase in scale of facilities that occurred from centralized water management. In addition, citizen's environmental awareness and participation is important because all infrastructure installed in the watershed where citizens live should have the function of water management. Therefore, the research was performed by investigating the citizen's recognition about urban environment와 LID application to analyze citizen's perceptions and analyze the feasibility and possibility of LID application. The LID awareness of citizens was about 59%, but only about 46% of citizens agreed on the extension of application. However, after contacting LID photographs and information, 90% of respondents agreed on the application of LID, and 94% of respondents were able to distinguish between grey infrastructure and LID infrastructure. Citizens appeared to have a tendency to recognize green spaces as multi-functional LID infrastructure or green infrastructure. If citizens recognize multi-functional LIDs only as landscapjng area, it will be very difficult to extend the LID on the city areas. Therefore, for the extended application of the LID facilities, it is necessary to use public relations strategy to utilize the results and visual data on the actual effect verification. In addition, as every social infrastructure is formed in watershed where citizens live, it is necessary to plan and manage the infrastructure through governance with citizen participation.

Platform Design for Multiple Sensor Array Signal Verification (다중 센서 어레이 신호 검증을 위한 플랫폼 설계)

  • Park, Jong-Sik;Lee, Seong-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.11
    • /
    • pp.2480-2487
    • /
    • 2011
  • As sensor technology grows up in fields such as environmental hazards detecting system, ubiquitous sensor network, intelligent robot, the sensing and detecting system for sensor is increasing. The sensor data is measured by change of chemical and physical status. Because of decrepit sensor or various sensing environment, it is problem that sensor data is inaccurate result. So the reliability of sensor data is essential. In this paper, we proposes a reliable sensor signal processing platform for various sensor. To improve reliability, we use same sensors in multiple array structure. As sensor data is corrected by spatial and temporal relation signal processing algorithm for measured sensor data, reliability of sensor data can be improved. The exclusive protocol between platform components is designed in order to verify sensor data and sensor state in various environment.

Verification for the Cyclic Shear Behavior of Rough Granite Joint Using Constitutive Equation (구성방정식을 이용한 거친 화강암 절리면의 주기전단거동 특성규명)

  • 김대상;박인준;이희석
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.1
    • /
    • pp.141-152
    • /
    • 2002
  • Although a number of constitutive models have been proposed to define the behavior of geotechnical materials including elastic, plastic, and dynamic response, flew numerical models have been developed for the cyclic shear behavior of rock joints or interfaces. Such realistic constitutive models play an important role in analyzing and predicting the response of joints under dynamic loads. The purpose of this research is to verify the constitutive model modified for rough granite joints based on Disturbed State Concept(DSC) model, which has been successfully verified with respect to other materials such as dry sand-steel interface and wet sand-concrete interface. Furthermore, DSC model is compared and verified with respect to cyclic shear tests and numerical analysis results based on Plesha model. Based on the results of this research, it can be stated that DSC model is capable of characterizing the cyclic shear behavior of rough granite joints under dynamic loads.