• Title/Summary/Keyword: environmental stress response

Search Result 534, Processing Time 0.025 seconds

Perspective of breaking stagnation of soybean yield under monsoon climate

  • Shiraiwa, Tatsuhiko
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.8-9
    • /
    • 2017
  • Soybean yield has been low and unstable in Japan and other areas in East Asia, despite long history of cultivation. This is contrasting with consistent increase of yield in North and South America. This presentation tries to describe perspective of breaking stagnation of soybean yield in East Asia, considering the factors of the different yields between regions. Large amount of rainfall with occasional dry-spell in the summer is a nature of monsoon climate and as frequently stated excess water is the factor of low and unstable soybean yield. For example, there exists a great deal of field-to-field variation in yield of 'Tanbaguro' soybean, which is reputed for high market value and thus cultivated intensively and this results in low average yield. According to our field survey, a major portion of yield variation occurs in early growth period. Soybean production on drained paddy fields is also vulnerable to drought stress after flowering. An analysis at the above study site demonstrated a substantial field-to-field variation of canopy transpiration activity in the mid-summer, but the variation of pod-set was not as large as that of early growth. As frequently mentioned by the contest winners of good practice farming, avoidance of excess water problem in the early growth period is of greatest importance. A series of technological development took place in Japan in crop management for stable crop establishment and growth, that includes seed-bed preparation with ridge and/or chisel ploughing, adjustment of seed moisture content, seed treatment with mancozeb+metalaxyl and the water table control system, FOEAS. A unique success is seen in the tidal swamp area in South Sumatra with the Saturated Soil Culture (SSC), which is for managing acidity problem of pyrite soils. In 2016, an average yield of $2.4tha^{-1}$ was recorded for a 450 ha area with SSC (Ghulamahdi 2017, personal communication). This is a sort of raised bed culture and thus the moisture condition is kept markedly stable during growth period. For genetic control, too, many attempts are on-going for better emergence and plant growth after emergence under excess water. There seems to exist two aspects of excess water resistance, one related to phytophthora resistance and the other with better growth under excess water. The improvement for the latter is particularly challenging and genomic approach is expected to be effectively utilized. The crop model simulation would estimate/evaluate the impact of environmental and genetic factors. But comprehensive crop models for soybean are mainly for cultivations on upland fields and crop response to excess water is not fully accounted for. A soybean model for production on drained paddy fields under monsoon climate is demanded to coordinate technological development under changing climate. We recently recognized that the yield potential of recent US cultivars is greater than that of Japanese cultivars and this also may be responsible for different yield trends. Cultivar comparisons proved that higher yields are associated with greater biomass production specifically during early seed filling, in which high and well sustained activity of leaf gas exchange is related. In fact, the leaf stomatal conductance is considered to have been improved during last a couple of decades in the USA through selections for high yield in several crop species. It is suspected that priority to product quality of soybean as food crop, especially large seed size in Japan, did not allow efficient improvement of productivity. We also recently found a substantial variation of yielding performance under an environment of Indonesia among divergent cultivars from tropical and temperate regions through in a part biomass productivity. Gas exchange activity again seems to be involved. Unlike in North America where transpiration adjustment is considered necessary to avoid terminal drought, under the monsoon climate with wet summer plants with higher activity of gas exchange than current level might be advantageous. In order to explore higher or better-adjusted canopy function, the methodological development is demanded for canopy-level evaluation of transpiration activity. The stagnation of soybean yield would be broken through controlling variable water environment and breeding efforts to improve the quality-oriented cultivars for stable and high yield.

  • PDF

Effects of Growth Period and Cumulative Temperature on Flowering, Ripening and Yield of Soybean by Sowing Times (파종시기별 생육일수 및 적산온도 변화가 콩의 개화, 등숙 및 수량에 미치는 영향)

  • Lee, Jae Eun;Jung, Gun Ho;Kim, Sung Kook;Kim, Min Tae;Shin, Su Hyeon;Jeon, Weon Tai
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.4
    • /
    • pp.406-413
    • /
    • 2019
  • The purpose of this research was to analyze the effect of different sowing times on the flowering and maturing of major soybean cultivars by varying day length and temperature in the central plain region. The average of growth period and cumulative temperature in five test cultivars by sowing times were 121 days and 2,972℃ on June 1, respectively and gradually decreased to 85 days, 2,042℃, respectively on July 20. Analysis of the flowering response according to the sowing times showed that flowering was greatly influenced by the decrease of photoperiod until the sowing on July 10, and the minimum number of days for flowering were 27 days, 36 days, respectively in early and mid-rate maturing type in the central plain region. Daepung 2 is classified to the same ecotype with Daewonkong, the total number of growing days was not different between two cultivars, but ripening period (R2-R6) was longer by 5 days and yield was higher by 11% in Daepung 2. The maturity rate was also high and safe enough to maintain more than 90% through the entire sowing times. This ecological characteristic can be usefully applied as a section index for breeding environmental stress resistant and high yielding soybean varieties. The yield of 4 domestic cultivars (except TI196944) sowing on July 20 were 85~92% levels compared to sowing on June 20.

Physiological Response of Rice Plant under Environmental Stress -I. Nutritional disorder under soil reduction in paddy fields (환경장애(環境障碍)에 대(對)한 수도(水稻)의 생리반응(生理反應) -I. 농가포장(農家圃場)의 토양환원(土壤還元)에 의(依)한 영향장해(營養障害))

  • Park, Hoon;Mok, Sung Kyun;Kwon, Hang Gwang;Park, Chon Suh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.6 no.2
    • /
    • pp.115-127
    • /
    • 1973
  • Leaf discoloration of IR667 lines (tropical) and leading locals (temperate) in fields was classified according to the probable causes and nutritional disorder due to soil reduction in 1972 was investigated. 1. The causes of leaf discoloration in IR667 were low air temperature, soil reduction, seed born, insect bite, nitrogen depression, overdose pesticide, strong wind, early senescence and unknown one. 2. Leaf discoloration due to soil reduction which has been called Sageumbyeong by famers, was caused by the heavy application of $Ca(OH)_2$, compost and poor drainage followed by Zn and K deficiency and Fe toxicity. 3. About 30 days after transplanting deficiency concentration of K and Zn in leaf blade appears to be less than 2.0% and 20ppm respectively, and greater than 200ppm, 500ppm, and 1.0% respectively for toxicity or excess of Fe, Mn and Ca. and in the shoot 2.4% for K, 30ppm for Zn and 800ppm for Fe. The value of K/Ca should be greaterthan 2.0 for health. 4. When plants were damaged by soil reduction the contents of N, P, Ca, Mg, Fe, Mn, Na in shoot were increased and those of K, Zn, Si were decreased. 5. IR667 lines show in shoot higher content of N, P, Ca, Mg, Si, Na, and lower content K, Zn, Fe, Mn and lower root activity than local leading varietles in either healthy or disieased case, indicating IR667 lines are likely more suseptible to soil reduction damage. 6. Normal soil was less than 6.5 of pH and greater than -50 mv of Eh, but pH of problem soil was ranged from 6.7 to 7.4 and Eh from -100 to -190. 7. The root activity (${\alpha}$-naphthylamine oxidation) decreased at early stage of soil redudtion damage, then increased with severity and at the end it decreased again, but IR667 lines showed always lower root activity than local ones.

  • PDF

Behavior of Truss Railway Bridge Using Periodic Static and Dynamic Load Tests (주행 열차의 정적 및 동적 재하시험 계측 데이터를 이용한 트러스 철도 교량의 주기적 거동 분석)

  • Jin-Mo Kim;Geonwoo Kim;Si-Hyeong Kim;Dohyeong Kim;Dookie Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.120-129
    • /
    • 2023
  • To evaluate the vertical loads on railway bridges, conventional load tests are typically conducted. However, these tests often entail significant costs and procedural challenges. Railway conditions involve nearly identical load profiles due to standardized rail systems, which may appear straightforward in terms of load conditions. Nevertheless, this study aims to validate load tests conducted under operational train conditions by comparing the results with those obtained from conventional load tests. Additionally, static and dynamic structural behaviors are extracted from the measurement data for evaluation. To ensure the reliability of load testing, this research demonstrates feasibility through comparisons of existing measurement data with sensor attachment locations, train speeds, responses between different rail lines, tendency analysis, selection of impact coefficients, and analysis of natural frequencies. This study applies to the Dongho Railway Bridge and verifies the applicability of the proposed method. Ten operational trains and 44 sensors were deployed on the bridge to measure deformations and deflections during load test intervals, which were then compared with theoretical values. The analysis results indicate good symmetry and overlap of loads, as well as a favorable comparison between static and dynamic load test results. The maximum measured impact coefficient (0.092) was found to be lower than the theoretical impact coefficient (0.327), and the impact influence from live loads was deemed acceptable. The measured natural frequencies approximated the theoretical values, with an average of 2.393Hz compared to the calculated value of 2.415Hz. Based on these results, this paper demonstrates that for evaluating vertical loads, it is possible to measure deformations and deflections of truss railway bridges through load tests under operational train conditions without traffic control, enabling the calculation of response factors for stress adjustments.