• Title/Summary/Keyword: environmental remediation

Search Result 689, Processing Time 0.033 seconds

Bioremediation Options for Nuclear Sites a Review of an Emerging Technology

  • Robinson, Callum;White-Pettigrew, Matthew;Shaw, Samuel;Morris, Katherine;Graham, James;Lloyd, Jonathan R.
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.3
    • /
    • pp.307-319
    • /
    • 2022
  • 60+ Years of nuclear power generation has led to a significant legacy of radioactively contaminated land at a number of nuclear licenced "mega sites" around the world. The safe management and remediation of these sites is key to ensuring there environmental stewardship in the long term. Bioremediation utilizes a variety of microbially mediated processes such as, enzymatically driven metal reduction or biominerialisation, to sequester radioactive contaminants from the subsurface limiting their migration through the geosphere. Additionally, some of these process can provide environmentally stable sinks for radioactive contaminants, through formation of highly insoluble mineral phases such as calcium phosphates and carbonates, which can incorporate a range of radionuclides into their structure. Bioremediation options have been considered and deployed in preference to conventional remediation techniques at a number of nuclear "mega" sites. Here, we review the applications of bioremediation technologies at three key nuclear licenced sites; Rifle and Hanford, USA and Sellafield, UK, in the remediation of radioactively contaminated land.

Remediation of Diesel Contaminated Soil Using Flowing Subcritical Water (흐름식 아임계수에 의한 경유오염토양의 정화)

  • Li, Guang-Chun;Jung, Sun-Kook;Chung, Seon-Yong;Jo, Young-Tae;Park, Jeong-Hun
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.3
    • /
    • pp.10-16
    • /
    • 2011
  • The experimental studies for remediation of diesel contaminated soils were performed using subcritical water in laboratory scale. Contaminated soils from industrial area and artificially contaminated soils were utilized for soil remediation. Experimental system was composed for subcritical water to flow upward through the soil packed column for extracting contaminants. 10 g of contaminated soil was packed into the column and water flow rate was 2 mL/min. To evaluate the effects of temperature, pressure and treatment time on the removal efficiency, temperature was changed from 100$^{\circ}C$ to 350$^{\circ}C$, pressure from 50 bar to 220 bar and treatment time at the predetermined temperature from 0 min to 120 min. The purification efficiency increased as temperature increased. However, the effect of pressure and treatment time was low. Temperature 250$^{\circ}C$, pressure 50 bar and treatment time 30 min were selected for optimal operating condition for this study.

A Study on the Pretreatment of Activated Sludge for Bio-hydrogen Production Process (생물학적 수소생산 공정 개발을 위한 오니 슬러지 전처리에 대한 연구)

  • Park, Dae-Won;Kim, Dong-Kun;Kim, Ji-Seong;Park, Ho-Il
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.3
    • /
    • pp.187-193
    • /
    • 2004
  • In this study, Anaerobic sewage sludge in a batch reactor operation at $35^\circ{C}$ was used as the seed to investigate the effect of pretreatments of waste activated sludge and to evaluate its hydrogen production potential by anaerobic fermentation. Various pretreatments including physical, chemical and biological means were conducted to utilize for substrate. As a result, SCODcr of alkali and mechanical treatment was 15 and 12 times enhanced, compared with a supernatant of activated sludge. And SCODcr was 2 time increase after re-treatment with biological hydrolysis. Those were shown that sequential hybridized treatment of sludge by chemical & biological methods to conform hydrogen production potential in bath experiments. When buffer solution was added to the activated sludge, hydrogen production potential increased as compare with no addition. Combination of alkali and mechanical treatment was higher in hydrogen production potential than other treatments.

The Status of Soil and Groundwater Contamination in Japan and Case Studies of their Remediation (일본의 토양지하수오염 및 복원사례)

  • Komai, Takeshi;Kawabe, Yoshishige
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.25-39
    • /
    • 2003
  • Risk and exposure assessment for subsurface environment is very important for both aspects of health and environmental protection as well as making decision of remedial goal for engineering activities. Exposure due to hazardous chemicals in the subsurface environment is essential to assess risk lev121 to individual person, especially from soil and groundwater environmental media. In this paper, the status of soil and groundwater contamination is presented to discuss on the problem for environmental risk assessment. The methodologies of fate and exposure models are also discussed by conducting the case studies of exposure assessment for heavy metals, organic compounds, and dioxin compounds. In addition, the structure of exposure models and available data for model calculation are examined to make clear more realistic exposure scenarios and the application to the practical environmental issues. Three kinds of advanced remediation techniques for soil and groundwater contamination are described in this paper, The most practical method for VOCs is the bio-remediation technique in which biological process due to consortium of microorganisms can be applied. For more effective remediation of soil contaminated by heavy metals we have adopted the soil flushing technique and clean-up system using electro-kinetic method. We have also developed the advanced techniques of geo-melting method for soil contaminated by DXNs and PCB compounds. These techniques are planed to introduce and to apply for a lot of contaminated sites in Japan.

  • PDF

The Characteristics of ElectroKinetic Remediation on Unsaturated Soil with Treatment Time (정화기간에 따른 불포화 자연토의 동전기 정화 특성)

  • Kim, Byung-Il;Kim, Jong-Yun;Lee, Jung-Chul;Kim, Soo-Sam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.890-896
    • /
    • 2004
  • This study is intended as an investigation of the EK remediation characteristics of natural soil with treatment time under unsaturated conditions. EK tests are performed under the voltage gradient of 1V/cm, the degree of saturation of 82.8%, and the installing of cation exchange membrane. It was found from the results that the acid front is initially transported at 0.75cm/day and then continuously degreased until the transport velocity of the acid front is balanced to the velocity of the base front. The residual lead concentration indicated the maximum value at the treatment time of lOdays, then the increasing of treatment time largely decreases the concentration within the sample though electromigration than electroosmosis.

  • PDF

Evaluation of Geostatistical Approaches for better Estimation of Polluted Soil Volume with Uncertainty Evaluation (지구통계 기법을 활용한 토양 오염범위 산정 및 불확실성 평가)

  • Kim, Ho-Rim;Kim, Kyoung-Ho;Yun, Seong-Taek;Hwang, Sang-Il;Kim, Hyeong-Don;Lee, Gun-Taek;Kim, Young-Ju
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.6
    • /
    • pp.69-81
    • /
    • 2012
  • Diverse geostatistical tools such as kriging have been used to estimate the volume and spatial coverage of contaminated soil needed for remediation. However, many approaches frequently yield estimation errors, due to inherent geostatistical uncertainties. Such errors may yield over- or under-estimation of the amounts of polluted soils, which cause an over-estimation of remediation cost as well as an incomplete clean-up of a contaminated land. Therefore, it is very important to use a better estimation tool considering uncertainties arising from incomplete field investigation (i.e., contamination survey) and mathematical spatial estimation. In the current work, as better estimation tools we propose stochastic simulation approaches which allow the remediation volume to be assessed more accurately along with uncertainty estimation. To test the efficiency of proposed methods, heavy metals (esp., Pb) contaminated soil of a shooting range area was selected. In addition, we suggest a quantitative method to delineate the confident interval of estimated volume (and spatial extent) of polluted soil based on the spatial aspect of uncertainty. The methods proposed in this work can improve a better decision making on soil remediation.

The Application of Dual Function Organoclay on Remediation of Toxic Metals and Organic Compounds in Soil-Water System (양친매성 유기점토를 이용한 중금속과 유기 오염물질 동시제거 기술)

  • Ok, Yong-Sik;Lim, Soo-Kil;Kim, Jeong-Gyu
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.3
    • /
    • pp.177-184
    • /
    • 2003
  • Although clay can sorb significant amounts of inorganic contaminants from soils and wastewater, the hydration of exchangeable cations in clay minerals makes it hydrophilic at the clay mineral surfaces and interlayers. Thus, natural clays are often ineffective in complexing and stabilizing toxic organic contaminants in soils and groundwater environment. But, substituting these hydrated cations with cationic surfactant such as QAC(Quaternary ammonium Compound) can change the natural clay from hydrophilic to hydropobic. Furthermore functionalized organoclay can act as a powerful dual function sorbent for both toxic metals and organic compounds. It also can be used as landfill clay liners, slurry walls, nano-composite materials, petroleum tank farms, waste treatment, and filter systems. To use this modified clay minerals effectively, it is required to understand the fundamental chemistry of organoclay, synthetic procedures, its engineering application, bioavailability of sorbed ion-clay complex, and potential risk of organoclay. In this review, we investigate the use, application and historical background of the organoclay in remediation technology. The state-of-the-art of organoclay research is also discussed. Finally, we suggest some future implications of organoclay in environmental research.

Life Cycle Assessment on Pump and Treatment Remediation of Contaminated Groundwater (오염 지하수 양수 및 처리 공정에 대한 전과정평가)

  • Cho, Jong-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.6
    • /
    • pp.405-412
    • /
    • 2011
  • Environmental impact by proposed pump and treatment remediation of groundwater contaminated with TCE over 0.6 mg/L down to 0.005 mg/L was assessed for 30 years operation in an industrial park. Total amount of groundwater treated was $2.96{\times}10^7m^3$ and the amount of TCE removed was 17.6 kg at most. The life cycle assessment was used to estimate the environmental cost and environmental benefit and their effects on the environment could be analyzed. Most of the environmental cost was accrued from electricity generation for 30 years pump operation, which includes energy consumption, resources consumption such as coal, crude oil, emission of global warming gas and acid gas into air, waste water production, and waste generation. Environmental impact could be quantified with a Life Cycle Assessment (LCA) model for soil and groundwater remediation and normalized based upon consumption and emission quantities per capita in the world. Among the normalized values, acidification material release was the most significant.

Removal of As, Cadmium and Lead in Sandy Soil with Sonification-Electrokinetic Remediation (초음파동전기기법을 이용한 비소, 카드뮴, 납으로 오염된 사질토 정화 연구)

  • Oh, SeungJin;Oh, Minah;Lee, Jai-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.7
    • /
    • pp.1-11
    • /
    • 2013
  • The actively soil pollution by the toxic heavy-metals like the arsenic, cadmium, lead due to the industrialization and economic activity. The uses the electrokinetic remediation of contaminated soil has many researches against the fine soil having a small size in the on going. However, it is the actual condition which the research result that is not effective due to the low surface charge of the particle and high permeability shows in the electrokinetic remediation in comparison with the fine soil in the case of the sandy soil in which the particle size is large. In this research, the electrokinetic remediation and ultrasonic wave fetch strategy is compound applied against the sandy soil polluted by the arsenic, cadmium, and lead removal efficiency of the sandy soil through the comparison with the existing electrokinetic remediation tries to be evaluated. First of all, desorption of contaminants in soil by ultrasonic extraction in the Pre-Test conducted to see desorption effective 5~15%. After that, By conducted Batch-Test results frequency output century 200 Khz, reaction time 30 min, contaminated soil used in experiment was 500 g. Removal efficiency of arsenic, cadmium, lead are 25.55%, 8.01%, 34.90%. But, As, Cd, Pb remediation efficiency less than 1% in EK1(control group).