• Title/Summary/Keyword: environmental prediction

Search Result 2,913, Processing Time 0.061 seconds

Bond Strength of Wafer Stack Including Inorganic and Organic Thin Films (무기 및 유기 박막을 포함하는 웨이퍼 적층 구조의 본딩 결합력)

  • Kwon, Yongchai;Seok, Jongwon
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.619-625
    • /
    • 2008
  • The effects of thermal cycling on residual stresses in both inorganic passivation/insulating layer that is deposited by plasma enhanced chemical vapor deposition (PECVD) and organic thin film that is used as a bonding adhesive are evaluated by 4 point bending method and wafer curvature method. $SiO_2/SiN_x$ and BCB (Benzocyclobutene) are used as inorganic and organic layers, respectively. A model about the effect of thermal cycling on residual stress and bond strength (Strain energy release rate), $G_c$, at the interface between inorganic thin film and organic adhesive is developed. In thermal cycling experiments conducted between $25^{\circ}C$ and either $350^{\circ}C$ or $400^{\circ}C$, $G_c$ at the interface between BCB and PECVD $ SiN_x $ decreases after the first cycle. This trend in $G_c$ agreed well with the prediction based on our model that the increase in residual tensile stress within the $SiN_x$ layer after thermal cycling leads to the decrease in $G_c$. This result is compared with that obtained for the interface between BCB and PECVD $SiO_2$, where the relaxation in residual compressive stress within the $SiO_2$ induces an increase in $G_c$. These opposite trends in $G_cs$ of the structures including either PECVD $ SiN_x $ or PECVD $SiO_2$ are caused by reactions in the hydrogen-bonded chemical structure of the PECVD layers, followed by desorption of water.

Prediction of Shear Strength in High-Strength Concrete Beams without Web Reinforcement Considering Size Effect (크기효과를 고려한 복부보강이 없는 고강도 콘크리트 보의 전단강도 예측식의 제안)

  • Bae, Young-Hoon;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.820-828
    • /
    • 2003
  • Recent research has indicated that the current ACI shear provision provides unconservative predictions for large slender beams and beams with low level of longitudinal reinforcement, and conservative results for deep beams. To modify some problems of ACI shear provision, ultimate shear strength equation considering size effect and arch action to compute shear strength in high-strength concrete beams without stirrups is presented in this research. Three basic equations, namely size reduction factor, rho factor, and arch action factor, are derived from crack band model of fracture mechanics, analysis of previous some shear equations for longitudinal reinforcement ratio, and concrete strut described as linear prism in strut-tie model deep beams. Constants of basic equations are determined using statistical analysis of previous shear testing data. To verify proposed shear equation for each variable, effective depth, longitudinal reinforcement ratio, concrete compressive strength and shear span-to-depth ratio, about 300 experimental data are used and proposed shear equation is compared with ACI 318-99 code, CEB-FIP Model code, Kim &Park's equation and Zsutty's equation. The proposed shear equation is not only simpler than other shear equations, it is but also shown to be economical predictions and reasonable safety margin. Hence proposed shear strength equation is expected to be applied to practical shear design.

Anchorage Strength of Headed Bars in Steel Fiber-Reinforced UHPC of 120 and 180 MPa (120, 180 MPa 강섬유 보강 초고성능 콘크리트에 정착된 확대머리철근의 정착강도)

  • Sim, Hye-Jung;Chun, Sung-Chul;Choi, Sokhwan
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.365-373
    • /
    • 2016
  • Ultra-High-Performance Steel Fiber-Reinforced Concrete (SUPER Concrete) exhibits improved compressive and tensile strengths far superior to those of conventional concrete. These characteristics can significantly reduce the cross sectional area of the member and the anchorage strength of a headed bar is expected to be improved. In this study, the anchorage strengths of headed bars with $4d_b$ or $6d_b$ embedment length were evaluated by simulated exterior beam-column joint tests where the headed bars were used as beam bars and the joints were cast of 120 or 180 MPa SUPER Concrete. In all specimens, the actual yield strengths of the headed bars over 600 MPa were developed. Some headed bars were fractured due to the high anchorage capacity in SUPER Concrete. Therefore, the headed bar with only $4d_b$ embedment length in 120 MPa SUPER Concrete can develop a yield strength of 600 MPa which is the highest design yield strength permitted by the KCI design code. The previous model derived from tests with normal concrete and the current design code underestimate the anchorage capacity of the headed bar anchored in SUPER Concrete. Because the previous model and the current design code do not consider the effects of the high tensile strength of SUPER Concrete. From a regression analysis assuming that the anchorage strength is proportional to $(f_{ck})^{\alpha}$, the model for predicting anchorage strength of headed bars in SUPER Concrete is developed. The average and coefficient of variation of the test-to-prediction values are 1.01 and 5%, respectively.

Prediction of Mortality and Yield for Chamaecyparis obtusa Using Stand Density Management Diagram (임분밀도관리도를 이용한 편백림의 고사량 및 수확량 예측)

  • Park, Joon Hyung;Yoo, Byung Oh;Lee, Kwang Soo;Park, Yong Bae;Kim, Hyung-Ho;Jung, Su Young
    • Journal of Korean Society of Forest Science
    • /
    • v.107 no.2
    • /
    • pp.174-183
    • /
    • 2018
  • This study aims to make the stand density management diagram which is useful for establishing stand density management system in Chamaecyparis obtusa forest. By using 216 sample plots to estimate Yield-Density relationship ($R^2=0.743$), the stand density management diagram was modeled by the estimated parameters. As a result of this diagram, after planting 3,000 trees per hectare the mortality rate of this unthinned C. obtusa stands over 80 years was estimated to be equal to $12.0{\sim}18.1trees{\cdot}ha^{-1}{\cdot}year^{-1}$, and stand volume was $463.1{\sim}695.4m^3{\cdot}ha^{-1}$, and stand density was $1,555{\sim}2,038trees{\cdot}ha^{-1}$. Developed stand density management diagram for C. obtusa is effective to establish the management criteria and production objective. Therefore, this study allowed us to make the optimal forest working plan.

Characteristics of Sediment and Flow with Channel Patterns in Alluvial Rivers (충적하천(沖積河川)의 수로양상(水路樣相)에 따른 유사(流砂) 및 흐름특성(特性))

  • Lee, Jong Seok;Lee, Dae Cheol;Pai, Dong Man;Cha, Young Kee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.5
    • /
    • pp.1177-1189
    • /
    • 1994
  • This paper aims to develop the numerical model for prediction of the channel migration by analyzing of sediment and flow characteristics with patterns of channel in alluvial rivers. Flow in rivers constitutes to be the meandering or the braided form and rarely straight channel through morphologically stable patterns with mutual actions between the flowing water and bed materials. In order to develop the model for simulation of the channel migration, the channels are divided into two types with positive or negative sign by the direction of curvature radius of the centerline channel ($r_c$). That is, the single bend-channel consists of only one curvature of positive or negative sign and the multi-bend channel consists of two more curvatures of positive or negative sign, respectively. The model analyzes the sediment and flow characteristics under the influence of superelevation, spiral motion, irregularity in bed topography and depth-averaged velocity of channels. For reliability of this model, the single bend-channel and the multi bend channel are compared with experiment data in other models and the measured field data in the Keum-River, respectively. As a result, the both com parisians turn out to be excellent.

  • PDF

Prediction of River Profile Changes Downstream of the Daecheong Dam by Using the Computer Program HEC-6 (HEC-6를 이용한 대청댐 하류의 하상변동예측)

  • Yu, Kwon Kyu;Woo, Hyo Seop
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.5
    • /
    • pp.157-163
    • /
    • 1993
  • The present study focuses on simulating river profile changes downstream of the Daecheong multipurpose dam by using the computer program HEC-6, which was developed by the United States Army Corps of Engineers. The dam locates at the Keum river, a typical alluvial stream, whose bed material is composed mostly of fine and medium sands. The study reveals that after the completion of dam, a 15 km long reach downstream from the regulatory dam was severely degraded by about 2~3 m. No further severe degradation of this reach is expected, however, because the river-bed of this reach has been well armored since then with gravels and cobbles. Some places in the study reach were degraded locally by 2 m, due mainly to the large-scale gravel mining activities in that reach. On the other hand, a 20 km long reach in downstream study reach is aggraded more or less by 0.5~1 m. Calculation by the computer program HEC-6 is close to measurement for the study river reach. According to the results by HEC-6, the study river reach would remain generally stable in the future, except a few places in the mid-upstream where further river-bed degradation of 1~2 m would occur and a few places in the far downstream where local river-bed aggradations of about 0.5 m would occur.

  • PDF

The Estimated Model of Wave Overtopping Volume according to Wave Characteristic (파랑특성(波浪特性)에 따른 월파량산정(越波量算定)에 관한 연구(硏究))

  • Park, Sang Kil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.2
    • /
    • pp.113-128
    • /
    • 1990
  • In recent years, various types of coastal protection scheme have been studied around the coastal region. Among them, so-called zonal protection systems are being watched with interest from various points of view. In this paper, wave overtopping rate from overflowing the vertical seawall is investigated by conducting two dimensional model on the horizontal bed experiment. Hereafter this system is referred to as a artificial reef system. One is the foundation to control wave height near the surfzone and the other is function to prevent coastal disaster by suppressing net overtopping rate. The main results obtained in this study are summarized as follows. 1) Wave attenuation taken place on the artificial reef can be predicted numerically by using energy dispersion model due to wave breaking proposed by Battjes. 2) To evaluate the wave overtopping rate from a vertical seadike on various coastal constructions by weir model, a numerical procedure for prediction of overtopping is confirmed.

  • PDF

Sediment Transport Characteristics in a Pressure Pipeline (압력 원형관로내 유사이송특성 연구)

  • Son, Kwang Ik;Kim, Hyun Jung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3B
    • /
    • pp.205-209
    • /
    • 2011
  • The low carrying capacity caused by the deposition in a sewer line is one of the main reason of the urban flood. Therefore, an efficient maintenance and management of the storm water drainage system is very important to prevent urban flood. In this research, the sediment transport characteristics through a pressure pipeline were examined with laboratory experiments. Bed-forms in a pipeline, sediment rates, roughness due to sediments were examined. Experimental system consists of flow circulation system with a pump and a sediment feeder at the upstream of the pipeline. Sediments were supplied into a 60 mm-diameter and 8 m-long pipe. Maximum flow rate is $30m^3/hr$, and the sediment feeding rate range is 5 g/s~19 g/s. Governing parameters and estimation equation for sediment transport rate were developed. The mean velocity (U), coefficient of viscosity (${\mu}$), unit width bed load ($q_b$), mean diameter of particle ($d_{50}$), unit weight of sediment in water (${\gamma}^{\prime}_s$) were adopted as the most influencing factors of sediment transport patterns. The prediction equation for sediment transport rate were developed with two dimensionless terms. These two dimensionless terms showed a linear relationship with high correlation coefficient.

Analysis of Impact of Hydrologic Data on Neuro-Fuzzy Technique Result (수문자료가 Neuro-Fuzzy 기법 결과에 미치는 영향 분석)

  • Ji, Jungwon;Choi, Changwon;Yi, Jaeeung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1413-1424
    • /
    • 2013
  • Recently, the frequency of severe storms increases in Korea. Severe storms occurring in a short time cause huge losses of both life and property. A considerable research has been performed for the flood control system development based on an accurate stream discharge prediction. A physical model is mainly used for flood forecasting and warning. Physical rainfall-runoff models used for the conventional flood forecasting process require extensive information and data, and include uncertainties which can possibly accumulate errors during modelling processes. ANFIS, a data driven model combining neural network and fuzzy technique, can decrease the amount of physical data required for the construction of a conventional physical models and easily construct and evaluate a flood forecasting model by utilizing only rainfall and water level data. A data driven model, however, has a disadvantage that it does not provide the mathematical and physical correlations between input and output data of the model. The characteristics of a data driven model according to functional options and input data such as the change of clustering radius and training data length used in the ANFIS model were analyzed in this study. In addition, the applicability of ANFIS was evaluated through comparison with the results of HEC-HMS which is widely used for rainfall-runoff model in Korea. The neuro-fuzzy technique was applied to a Cheongmicheon Basin in the South Han River using the observed precipitation and stream level data from 2007 to 2011.

Influence of Column Base Rigidity on Behavior of Steel Buildings (강구조물 지지부의 강성도가 구조물 거동에 미치는 영향)

  • 권민호;박문호;장준호;박순응
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.1
    • /
    • pp.165-172
    • /
    • 2002
  • Generally, the steel rigid frame has been analyzed using finite element analysis tools. While many efforts have been poured into the understanding and accurate prediction for the nonlinear behavior of the columns and beam-columns connections, the base of the columns are modeled as simply hinged or fixed. However, the base of the steel columns practically is neither fixed not hinged. It behaves as semi-rigid. In this paper, the supports of the columns we modeled as semi-rigid and the importance of such approach in moment-resisting columns is evaluated. Two typical buildings designed by the US specification are modeled and analyzed by the finite element based on stiffness method and flexibility method. The column bases of three-story buildings are modeled as rotational springs with a varying degree of stiffness and strength that simulates the semi-rigidity of the base. Depending on the degree of stiffness and strength, the semi-rigidity varies from the hinged to the fixed. Buildings with semi-rigid column bases behaves similarly to the building with fixed bases. It has been numerically observed through the pushover and nonlinear time history analyses that the decrease of the stiffness of the column base induces the rotational demand on the int air beams. an increase of rotation demands on the first store connections and lead to a soft-story mechanists Due often to the construction and environmental effects, undesired reduction of column base stiffness may cause an increase of rotation demands on the first store connections and lead to a soft-story mechanism.