• Title/Summary/Keyword: environmental performance assessment

Search Result 670, Processing Time 0.033 seconds

Preparatory Applications for Performance-based Regulatory System in Japanese Landscape Architecture Related Fields (일본 조경관련 분야의 성능규정화 대비방안)

  • Kim, Min-Soo
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.35 no.5
    • /
    • pp.37-45
    • /
    • 2007
  • WTO/TBT requires that, for technical regulations affecting trade, technical regulatory requirements must be specified where possible in terms of performance rather than design or descriptive characteristics. The movement which made "performance" a keyword in landscape architecture was activated in Japan, one of the leading counties in performance-based regulatory system(PBRS). The Japanese recent movement of systematization activity on performance-based standards and specifications was reviewed and operational applications for performance-based regulatory system in South Korea are summarized as follows: 1. The establishment of performance standards that can be properly evaluated by assessment indicators is necessary in cases when quantitative evaluation is difficult. 2. As a preparation for PBRS, a brief procurement system by technical proposal for the landscape design and construction is necessary. 3. As a preparation for PBRS, activation of an environmental performance evaluation on experimental construction is necessary. 4. As a preparation for PBRS, a certification system of environmental performance on various landscape construction methods is necessary. 5. The Private Finance Initiative Project is the most similar to PBRS therefore, activation of the Private Finance Initiative Project is necessary in landscape architecture projects for park rehabilitation.

A Comparative Study for Estimation Methodologies of Soil Organic Carbon Stocks for Environmental Assessment on Development Projects (개발사업 환경성평가에서의 토양 탄소저장량 산정방법 비교 연구)

  • Hwang, Sang Il;Park, Sun Hwan;Jeon, Young Bong;Hwang, Joung Bae;Kang, Seon Hong;Kim, Jin Hong
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.6
    • /
    • pp.445-452
    • /
    • 2014
  • The objective of this study was to propose the best methodology for estimating soil organic carbon stocks during environmental assessment for development projects. We compared three methodologies which were developed by Korea Environment Corporation(2010), Korea Forest Research Institute (2006), and Jin-Hyun Jung (1998). We found that the methodology developed by Jin-Hyun Jung (1998) shows the worst performance and the methodology of Korea Forest Research Institute (2006) does not reflect a variety of soil types and land use characteristics shown in development project plans. Therefore, we propose that the methodology developed by Korea Environment Corporation (2010) is the most reasonable one because it is internationally accepted and used for local governments to make the inventory of greenhouse gases as well as to set up its reduction strategy.

Development of the Assessment Framework for the Environmental Impacts in Construction

  • Hong, Tahoon;Ji, Changwoon;Jeong, Kwangbok;Park, Joowan
    • Journal of Construction Engineering and Project Management
    • /
    • v.3 no.3
    • /
    • pp.1-9
    • /
    • 2013
  • Environmental problems like global warming have now become important issues that should be considered in all industries, including construction. In South Korea, many studies have been conducted to achieve the government's goals of reduction in environmental impacts. However, the research on buildings has only focused on CO2 emission as a research target despite the fact that other environmental impacts resulting from ozone depletion and acidification should also be considered, in addition to global warming. In this regard, this study attempted to propose assessment criteria and methods to evaluate the environmental performance of the structures from various aspects. The environmental impact category can be divided into global impacts, regional impacts, and local impacts. First, global impacts include global warming, ozone layer depletion, and abiotic resource depletion, while regional impacts include acidification, eutrophication, and photochemical oxidation. In addition, noise and vibration occurring in the building construction phase are defined as local impacts. The evaluation methods on the eight environmental impacts will be proposed after analyzing existing studies, and the methods representing each environmental load as monetary value will be presented. The methods presented in this study will present benefits that can be obtained through green buildings with a clear quantitative assessment on structures. Ultimately, it is expected that if the effects of green buildings are clearly presented through the findings of this study, the greening of structures will be actively expanded.

Fundamental Study on Environmental Assessment of a Bimodal Tram (Bimodal Tram 환경성 평가의 기초적 검토)

  • Kim, Yong-Ki;Lee, Jae-Young;Lee, Cheul-Kyu;Yoon, Hee-Tack;Yang, In-Mog
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.969-973
    • /
    • 2007
  • There have been worldwide efforts to develop environmental-friendly transportation systems, which aim to solve the environmental issues such as pollution with the traffic congestion in downtown. For some developed countries, environmental indicators to estimate their environmental performances as well as eco-design technologies in the field of transportation have been already secured. In Korea, however, relatively fundamental studies which are insufficient to calculate quantitatively the environmental impacts have been performed. In this study, the life cycle assessment was introduced as one of methodologies to evaluate environmental performance and reduce environmental impacts of a bimodal tram system throughout its entire life cycle, including design, manufacture, operation and disuse steps.

  • PDF

Life Cycle Assessment and Eco-efficiency Analysis for the Resource-circulation Network of Waste Heat Generated from Industrial Process (공정폐열의 자원순환 네트워크 구성을 위한 전과정 평가 및 생태효율성 분석)

  • Shin, Choon-Hwan;Park, Do-Hyun;Kim, Ji-Won
    • Journal of Environmental Science International
    • /
    • v.22 no.3
    • /
    • pp.281-289
    • /
    • 2013
  • For the purpose of evaluating the eco-efficiency(EE) on surplus heat generated from industrial process, techniques of life cycle assessment are adopted in this study. Because it can be indicated both environmental impacts and economic benefits, EE is well known as a useful tool for symbiosis network on the sustainable development of new projects and businesses. To evaluate environmental impacts, the categories were divided into two areas of resource depletion and global warming potential. It can be seen that environmental impact increased a little but much higher economic benefit on the company, environmental performance and economic value were improved on the apartment by the district heating, respectively. In result, eco-industrial park(EIP) project on surplus heat should be found sustainable new business because the EE was in the area of fully positively eco-efficiency and, moreover resource depletion was taken place than the reduction of greenhouse gas.

Assessment on Economies-Environmental Affect of Smart Operation System(SOS) in Sewage Treatment Plant (실증규모 하수처리장에 적용된 스마트 운영시스템의 경제-환경적 기여도 평가)

  • Kim, Younkwon;Seo, InSeok;Kim, Hongsuck;Kim, Jiyeon
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.6
    • /
    • pp.581-589
    • /
    • 2013
  • Generally, Sewage Treatment Plants(STPs) are complexes systems in which a range of physical, chemical and biological processes occur. However, their performance strongly depends on the know-how acquired by the field-engineer. Recently, in order to solve this situations, various operation and management technologies based on the Instrumentation, Control and Automation(ICA) have been developed. As a economies-environmental affect point of view, this study was for the performance evaluation and assessment of results from the Smart Operation System(SOS) in full-scale STP. The SOS in STP consisted of the process monitoring module, including real-time influent prediction and effluent simulation, and the Smart Air Control(SAC) module. According to the results from field test for 2 years, the results of economical evaluation, amount of benefits and cost saving by the SOS have shown to be much higher than that of traditional operation. Nevertheless, the removal load(kg/yr) of BOD 13.3 %, COD 28.2 %, TN 44.4 % and TP 20.8 % were increased, respectively. Remarkable improvement of removal load could be achieved after the SOS was adapted. It was concerned that the SOS offer a user friendly functionalities and cost saving needed by the field-engineers. In addition, it was expected that the results of this study would supply helpful information for design and cost saving for the SOS in full-scale STP.

A study on the performance test and acoustic design of interference type noise reduction device for railway noise (철도소음 저감을 위한 간섭형 방음장치 음향 설계 및 성능시험에 관한 연구)

  • Cho, Jun-Ho;Koh, Hyo-In
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.6
    • /
    • pp.787-795
    • /
    • 2011
  • Noise barrier is generally used with welding of joint rail for railway noise reduction in our country. But the noise barrier for high speed railway has weak point in low frequencies about 315Hz band. In this study, For developing of Interference-type Noise Reduction Device(INRD), acoustic analysis were performed using commercial software. For verifying the improvement in the noise reduction, noise measurement before and after installing of INRD were performed in Anechoic Chamber. From these acoustic analysis and noise measurement, it was known that developed INRD has a good noise reduction performance and can be used efficiently with conventional noise barrier.

Life Cycle Assessment of Ethanol Production Process Based on Catalytic Reaction (촉매반응에 의한 에탄올 생산공정의 전 과정 평가)

  • Chung, Yonsoo;Hwang, Ilhoon;Yeo, Yeong-Koo;Joo, Oh-Shim;Jung, Kwang-Deog
    • Korean Chemical Engineering Research
    • /
    • v.44 no.3
    • /
    • pp.323-327
    • /
    • 2006
  • In this paper, the methodology of life-cycle assessment was applied to an ethanol production process based on catalytic reaction. The environmental performance of the process was quantified and compared with that of the fermentation process. The purpose of the assessment was to develop design guidelines for the environmentally better ethanol production. The assessment was carried only on the stages of raw material acquisition through ethanol manufacture since it was assumed that ethanol from two processes had the same environmental impacts through its use and discard. The inventory analysis of the catalytic process resulted in that carbon dioxide from methanol production was the major environmental impact. The impact assessment showed that the fermentation process was environmentally better than the catalytic one. Suggestions for environmental improvement of the catalytic process were prepared based on the assessment results.

Application of Life Cycle Assessment to Enhance the Environmental Performance of Process Systems and Products (공정시스템과 제품의 환경성을 향상시키기 위한 전과정평가의 활용)

  • Lim, Seong-Rin
    • Clean Technology
    • /
    • v.20 no.4
    • /
    • pp.339-348
    • /
    • 2014
  • Life cycle assessment (LCA) has become an important tool used to enhance the environmental performance of process systems and products. LCA is an essential element in design for environment (DfE) because LCA can be utilized to evaluate and analyze environmental impacts incurred in the life cycle and supply chain. This review presents methodologies that can be used to integrate LCA into DfE activities and reduce environmental impacts from process systems and products; and introduces case studies for water supply systems and cellular phones. LCA is first used to quantify environmental impacts and identify the principal contributor to high impacts. In the next step, environmental impacts from principal contributors can be reduced by using mathematical optimization tools as an engineering and technological approach and by utilizing the cooperation of professionals from a diverse range of fields. Because the methodologies and case studies can be applied and extended to other fields, this review paper can contribute to helping prevent environmental pollution and enhance the sustainability of our society.

A Study on Spatial Prediction of Water Quality Constituents Using Spatial Model (공간모형을 이용한 수질오염물질의 공간적 예측 및 평가에 대한 연구)

  • Kang, Taegu;Lee, Hyuk;Kang, Ilseok;Heo, Tae-Young
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.4
    • /
    • pp.409-417
    • /
    • 2014
  • Spatial prediction methods have been useful to determine the variability of water quality in space and time due to difficulties in collecting spatial data across extensive spaces such as watershed. This study compares two kriging methods in predicting BOD concentration on the unmonitored sites in the Geum River Watershed and to assess its predictive performance by leave-one-out cross validation. This study has shown that cokriging method can make better predictions of BOD concentration than ordinary kriging method across the Geum River Watershed. Challenges for the application of cokriging on the spatial prediction of surface water quality involve the comparison of network-distance-based relationship and euclidean-distance-based relationship for the improvement in the predictive performance.