Application of artificial intelligence (AI) approaches in eco-environmental modeling has gradually increased for the last decade. Comprehensive understanding and evaluation on the applicability of this approach to eco-environmental modeling are needed. In this study, we reviewed the previous studies that used AI-techniques in eco-environmental modeling. Decision Tree (DT) and Artificial Neural Network (ANN) were found to be major AI algorithms preferred by researchers in ecological and environmental modeling areas. When the effect of the size of training data on model prediction accuracy was explored using the data from the previous studies, the prediction accuracy and the size of training data showed nonlinear correlation, which was best-described by hyperbolic saturation function among the tested nonlinear functions including power and logarithmic functions. The hyperbolic saturation equations were proposed to be used as a guideline for optimizing the size of training data set, which is critically important in designing the field experiments required for training AI-based eco-environmental modeling.
In the Seoul Metropolitan Area(SMA) photochemical air pollutants, nitrogenic compound and particulate matters have increased substantially due to mobile sources, power plants and so on. Therefore 'Special Act on Seoul Metropolitan Air Quality Improvement' was enacted on 2003 in order to improve air quality in the SMA. According to the Special Act, Central and local government have developed the state implementation plan(SIP) to reduce air pollutant emissions from various local sources. One of the key elements of the SIP development is the air quality modeling since modeling results can be used to establish emissions control strategies as well as to demonstrate attainment of air quality goals for ozone, particulate matter, and so on. Air quality modeling, therefore, can be usefully utilized to investigate the effects of government's efforts according to control strategies or measures. Using the air quality model, we can determine whether the implementation plan should be revised or not. A number of questions, however, has been raised concerning accuracy, consistency and transparency of modeling results because if we do not trust modeling results, all the measures dependent on modeling becomes in vain. So, without dealing with these questions, we can not guarantee the reliability and utilizability of air quality modeling results. In this study, we tried to establish standard methodology for air quality modeling in order to ensure consistency and transparency of modeling results used in the development and evaluation of national air policy. For this purpose, we established air quality modeling guideline to provide or recommend modeling procedures, vertical and horizontal domains, input data of meteorological and air quality modeling and so on.
This study traces the origin, evolution, and current state-of-the-art of engineering-oriented water-quality management and modeling. Three attributes of polluted water underlie human concerns for water quality: rubbish (aesthetic impairment), stink (ecosystem impairment), and death (public health impairment). The historical roots of both modern environmental engineering and water-quality modeling are traced to the late nineteenth and early twentieth centuries when European and American engineers worked to control and manage urban wastewater. The subsequent evolution of water-quality modeling can be divided into four stages related to dissolved oxygen (1925-1960), computerization (1960-1970), eutrophication (1970-1977) and toxic substances (1977-1990). Current efforts to integrate these stages into unified holistic frameworks are described. The role of water-quality management and modeling for developing economies is outlined.
Water quality models are scientific tools that simulate and interpret the relationship between physical, chemical and biological reactions to external pollutant loads in water systems. They are actively used as a key technology in environmental water management. With recent advances in computational power, water quality modeling technology has evolved into a coupled three-dimensional modeling of hydrodynamics, water quality, and ecological inputs. However, there is uncertainty in the simulated results due to the increasing model complexity, knowledge gaps in simulating complex aquatic ecosystem, and the distrust of stakeholders due to nontransparent modeling processes. These issues have become difficult obstacles for the practical use of water quality models in the water management decision process. The objectives of this paper were to review the theoretical background, needs, and development status of water quality modeling technology. Additionally, we present the potential future directions of water quality modeling technology as a scientific tool for national environmental water management. The main development directions can be summarized as follows: quantification of parameter sensitivities and model uncertainty, acquisition and use of high frequency and high resolution data based on IoT sensor technology, conjunctive use of mechanistic models and data-driven models, and securing transparency in the water quality modeling process. These advances in the field of water quality modeling warrant joint research with modeling experts, statisticians, and ecologists, combined with active communication between policy makers and stakeholders.
The modern era of water quality modeling in the United States began in the 1960s. Pushed by advances in computer technology as well as environmental sciences, water quality modeling evolved through five broad periods: (1) initial model development with mainframe computers (1960s - mid 1970s), (2) model refinement and generalization with minicomputers (mid 1970s - mid 1980s), (3) model standardization and support with microcomputers (mid 1980s - mid 1990s), (4) better model access and performance with faster desktop computers running Windows and local area networks linked to the Internet (mid 1990s - early 2000s), and (5) model integration and widespread use of the Internet (early 2000s - present). Improved computer technology continues to drive improvements in water quality models, including more detailed environmental analysis (spatially and temporally), better user interfaces and GIS software, more accessibility to environmental data from on-line repositories, and more robust modeling frameworks linking hydrodynamics, water quality, watershed and atmospheric models. Driven by regulatory needs and advancing technology, water quality modeling will continue to improve to better address more complicated water bodies and pollutant types, and more complicated management questions. This manuscript describes historical trends in water quality model development in the United States, reviews current efforts, and projects promising future directions.
$SO_2$ concentrations in the Seoul Metropolitan Area (SMA) were predicted by the regional segment ISCST3 modeling. The SMA was segmented by three modeling regions where the weather monitoring station exists since the area of the SMA, approximately $100km{\times}100km$, is too wide to be modeled by one modeling domain. The predicted concentrations by the model were compared with the measured concentrations at 39 air monitoring stations located in the SMA to validate the ISCST3 modeling coupled with the regional segment approach. The predicted concentrations by the regional segment method showed better performance in depicting the measurements than those by the non-segment ISCST3 modeling. The correction methods of the calculated concentrations reviewed were here the correlation method by the first order linear equation and the ratio method of observed to calculated concentrations. The corrected concentrations by two methods showed good agreement with the measured data. The ratio method was, however, easily applicable to the concentration correction in case of a wide modeling region considered in this study.
The 7th International Conference on Construction Engineering and Project Management Summit Forum on Sustainable Construction and Management
/
pp.242-244
/
2017
Excavation for construction is implemented in natural geographical terrain using a variety of construction equipment. Therefore, 3D excavation simulation requires integration of geographical and equipment modeling. This paper proposes a technique that integrates geographical and equipment modeling for 3D simulations of construction excavation. The geographical model uses a digital map to show ground surface changes during excavation and the equipment model shows equipment movement and placement. This combination produced a state of the art 3D simulation environment that can be used for machine guidance. An equipment operator can use the 3D excavation simulation to help construction equipment operators with decisions during excavation work and consequently improve productivity.
Climate change is an important issue, with many researches examining not only future climatic conditions, but also the interaction of climate and air quality. In this study, a new version of the emissions processing software tool - Python-based PRocessing Operator for Climate and Emission Scenarios (PROCES) - was developed to support climate and atmospheric chemistry modeling studies. PROCES was designed to cover global and regional scale modeling domains, which correspond to GEOS-Chem and CMAQ/CAMx models, respectively. This tool comprises of one main system and two units of external software. One of the external software units for this processing system was developed using the GIS commercial program, which was used to create spatial allocation profiles as an auxiliary database. The SMOKE-Asia emissions modeling system was linked to the main system as an external software, to create model-ready emissions for regional scale air quality modeling. The main system was coded in Python version 2.7, which includes several functions allowing general emissions processing steps, such as emissions interpolation, spatial allocation and chemical speciation, to create model-ready emissions and auxiliary inputs of SMOKE-Asia, as well as user-friendly functions related to emissions analysis, such as verification and visualization. Due to its flexible software architecture, PROCES can be applied to any pregridded emission data, as well as regional inventories. The application results of our new tool for global and regional (East Asia) scale modeling domain under RCP scenario for the years 1995-2006, 2015-2025, and 2040-2055 was quantitatively in good agreement with the reference data of RCPs.
When constructing tunnels, it is important to understand structural, geological and hydrogeological conditions. Geumgeong tunnel that has been constructed in Mt. Geumjeong for the Gyeongbu express railway induced rapid drawdown of groundwater in the tunnel construction area and surroundings. This study aimed to analyze groundwater flow system and baseflow using long-term monitoring and groundwater flow modeling around Geumgeong tunnel. Field hydraulic tests were carried out in order to estimate hydraulic conductivity, transmissivity, and storativity in the study area. Following the formula of Turc and groundwater flow modeling, the annual evapotranspiration and recharge rate including baseflow were estimated as 48% and 23% compared to annual precipitation, respectively. According to the transient modeling for 12 years after tunnel excavation, baseflow was estimated as $9,796-9,402m^3/day$ with a decreasing tendency.
최근 지속 가능한 산업 개발을 위한 생태산업단지(eco-industrial park, EIP)의 개발이 각 국가별로 활성화 되고 있다. 생태산업단지(eco-industrial park)는 사업의 특성상 기업 및 정부, 그리고 자치단체가 모두 참여하는 성격을 지니지만 이를 구체적으로 실현하는 데는 공학적인 모델링 과정이 필요하다. 생태산업단지를 위한 주요 기술로는 에너지 교환, 물질흐름분석, 용수 이용 최적화, 전과정 평가를 통한 환경영향평가 등이 있다. 생태산업단지를 공학적으로 설계하는데 있어서 해당 기업들의 물질흐름이 어떻게 진행되고 이것을 어떻게 최적화 하여 모델링 할 것인지가 주요 목적이므로 물질흐름분석(material flow analysis, MFA) 방법론은 생태산업단지 설계에 유용하게 적용될 수 있다. 본 연구에서는 물질흐름분석 방법론 기술과 포항 생태산업 시범단지의 사례연구를 바탕으로 물질흐름 분석방법을 생태산업단지 모델링에 적용하는 방법, 그리고 MFA 모델링을 위한 소프트웨어의 활용을 제시한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.