• Title/Summary/Keyword: environmental microbiology

Search Result 1,769, Processing Time 0.031 seconds

Calcium Carbonate Precipitation by Bacillus and Sporosarcina Strains Isolated from Concrete and Analysis of the Bacterial Community of Concrete

  • Kim, Hyun Jung;Eom, Hyo Jung;Park, Chulwoo;Jung, Jaejoon;Shin, Bora;Kim, Wook;Chung, Namhyun;Choi, In-Geol;Park, Woojun
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.3
    • /
    • pp.540-548
    • /
    • 2016
  • Microbially induced calcium carbonate precipitation (CCP) is a long-standing but re-emerging environmental engineering process for production of self-healing concrete, bioremediation, and long-term storage of CO2. CCP-capable bacteria, two Bacillus strains (JH3 and JH7) and one Sporosarcina strain (HYO08), were isolated from two samples of concrete and characterized phylogenetically. Calcium carbonate crystals precipitated by the three strains were morphologically distinct according to field emission scanning electron microscopy. Energy dispersive X-ray spectrometry mapping confirmed biomineralization via extracellular calcium carbonate production. The three strains differed in their physiological characteristics: growth at alkali pH and high NaCl concentrations, and urease activity. Sporosarcina sp. HYO08 and Bacillus sp. JH7 were more alkali- and halotolerant, respectively. Analysis of the community from the same concrete samples using barcoded pyrosequencing revealed that the relative abundance of Bacillus and Sporosarcina species was low, which indicated low culturability of other dominant bacteria. This study suggests that calcium carbonate crystals with different properties can be produced by various CCP-capable strains, and other novel isolates await discovery.

Gut Microbiota of Tenebrio molitor and Their Response to Environmental Change

  • Jung, Jaejoon;Heo, Aram;Park, Yong Woo;Kim, Ye Ji;Koh, Hyelim;Park, Woojun
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.7
    • /
    • pp.888-897
    • /
    • 2014
  • A bacterial community analysis of the gut of Tenebrio molitor larvae was performed using pyrosequencing of the 16S rRNA gene. A predominance of genus Spiroplasma species in phylum Tenericutes was observed in the gut samples, but there was variation found in the community composition between T. molitor individuals. The gut bacteria community structure was not significantly affected by the presence of antibiotics or by the exposure of T. molitor larvae to a highly diverse soil bacteria community. A negative relationship was identified between bacterial diversity and ampicillin concentration; however, no negative relationship was identified with the addition of kanamycin. Ampicillin treatment resulted in a reduction in the bacterial community size, estimated using the 16S rRNA gene copy number. A detailed phylogenetic analysis indicated that the Spiroplasma-associated sequences originating from the T. molitor larvae were distinct from previously identified Spiroplasma type species, implying the presence of novel Spiroplasma species. Some Spiroplasma species are known to be insect pathogens; however, the T. molitor larvae did not experience any harmful effects arising from the presence of Spiroplasma species, indicating that Spiroplasma in the gut of T. molitor larvae do not act as a pathogen to the host. A comparison with the bacterial communities found in other insects (Apis and Solenopsis) showed that the Spiroplasma species found in this study were specific to T. molitor.

A Lipopeptide Biosurfactant Produced by Bacillus subtilis C9 Selected through the Oil Film-collapsing Assay

  • Kim, Hee-Sik;Lee, Chang-Ho;Suh, Hyun-Hyo;Ahn, Keug-Hyun;Oh, Hee-Mock;Kwon, Gi-Seok;Yang, Ji-Won;Yoon, Byung-Dae
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.3
    • /
    • pp.180-188
    • /
    • 1997
  • Bacillus subtilis C9 was selected by measuring the oil film-collapsing activity and produced biosurfactant in a medium containing glucose as a sole carbon source. The biosurfactant emulsified hydrocarbons, vegetable oils and crude oil, and lowered the surface tension of culture broth to 28 dyne/cm. A biosurfactant, C9-BS produced by B. subtilis C9 was purified by ultrafiltration, extraction with chloroform and methanol, adsorption chromatography, and preparative reversed phase HPLC. Structural analyses, IR spectroscopy, FAB mass spectroscopy, amino acid composition, and NMR analyses, demonstrated that C9-BS was a lipopeptide comprising a fatty acid tail and peptide moiety. The lipophilic part consisting of $C_{14}\;or\;C_{15}$ hydroxy fatty acid was linked to the hydrophilic peptide part, which contained seven amino acids (Glu-Leu-Leu-Val-Asp-Leu-Leu) with a lactone linkage.

  • PDF

Determination of Medium Components in the Flocculating Activity and Production of Pestan Produced by Pestalotiopsis sp. by Using the Plackett-Burman Design

  • Moon, Seong-Hoon;Hong, Soon-Duck;Kwon, Gi-Seok;Suh, Hyun-Hyo;Kim, Hee-Sik;An, Keug-Hyun;Oh, Hee-Mock;Mheen, Tae-Ick;Yoon, Byung-Dae
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.4
    • /
    • pp.341-346
    • /
    • 1998
  • Optimization for the production of Pest an was followed by the Plackett-Burman Design, using modified Czapek-dox medium as the starting point. At the flask level, $K_2HPO_4$, $MgSO_4{\cdot}7H_2O$, and aeration variables positively affected the Pestan production, DCW (dry cell weight), apparent viscosity, and flocculating activity response. KCI and $FeSO_4{\cdot}7H_2O$ negatively affected the Pestan production, DCW, apparent viscosity, and flocculating activity response. Aeration variable was shown to have a positive effect on only the flocculating activity response among Pestan production, DCW, and apparent viscosity responses. In comparison of the positive and negative variables media conditions, Pestan production and flocculating activity differed by about 9 and 125 times, respectively. In particular, at the jar fermentor level, the aeration variable was the most important factor of the all responses (pestan production, DCW, apparent viscosity, flocculating activity, and anionic charge density). The flocculating activity and apparent viscosity of Pestan were closely related to the molecular chain length and charge density.

  • PDF

vfr, A Global Regulatory Gene, is Required for Pyrrolnitrin but not for Phenazine-1-carboxylic Acid Biosynthesis in Pseudomonas chlororaphis G05

  • Wu, Xia;Chi, Xiaoyan;Wang, Yanhua;Zhang, Kailu;Kai, Le;He, Qiuning;Tang, Jinxiu;Wang, Kewen;Sun, Longshuo;Hao, Xiuying;Xie, Weihai;Ge, Yihe
    • The Plant Pathology Journal
    • /
    • v.35 no.4
    • /
    • pp.351-361
    • /
    • 2019
  • In our previous study, pyrrolnitrin produced in Pseudomonas chlororaphis G05 plays more critical role in suppression of mycelial growth of some fungal pathogens that cause plant diseases in agriculture. Although some regulators for pyrrolnitrin biosynthesis were identified, the pyrrolnitrin regulation pathway was not fully constructed. During our screening novel regulator candidates, we obtained a white conjugant G05W02 while transposon mutagenesis was carried out between a fusion mutant $G05{\Delta}phz{\Delta}prn::lacZ$ and E. coli S17-1 (pUT/mini-Tn5Kan). By cloning and sequencing of the transposon-flanking DNA fragment, we found that a vfr gene in the conjugant G05W02 was disrupted with mini-Tn5Kan. In one other previous study on P. fluorescens, however, it was reported that the deletion of the vfr caused increased production of pyrrolnitrin and other antifungal metabolites. To confirm its regulatory function, we constructed the vfr-knockout mutant $G05{\Delta}vfr$ and $G05{\Delta}phz{\Delta}prn::lacZ{\Delta}vfr$. By quantifying ${\beta}-galactosidase$ activities, we found that deletion of the vfr decreased the prn operon expression dramatically. Meanwhile, by quantifying pyrrolnitrin production in the mutant $G05{\Delta}vfr$, we found that deficiency of the Vfr caused decreased pyrrolnitrin production. However, production of phenazine-1-carboxylic acid was same to that in the wild-type strain G05. Taken together, Vfr is required for pyrrolnitrin but not for phenazine-1-carboxylic acid biosynthesis in P. chlororaphis G05.