• 제목/요약/키워드: environmental light

Search Result 2,772, Processing Time 0.03 seconds

Decolorization of Rhodamine B Using UV/$TiO_2$ System (UV/$TiO_2$ 시스템을 이용한 Rhodamine B의 색도 제거)

  • 박영식;나영수;안갑환
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.5
    • /
    • pp.59-64
    • /
    • 2002
  • The photocatalytic decolorization of the Rhodamine B (RhB) was studied using a UV/TiO$_2$ reactor. Yakuri titanium dioxide(anatase) was used as the suspended photocatalyst and proved to be effective for decolorization irradiated with UV light (254 mm). The photocatalyzed dioxide concentrations, light intensity and air flow rates. In 0.01 mM RhB, color could be completely photodegraded after 3 hours. Absorption spectrum of an aqueous solution containing RhB showed a continued diminution of the RhB concentration in the solution bulk : concomitantly, no new absorption peaks appeared. This confirmed the decolorization of RhB, i.e., the break up of the chromopore. The optimum loaded titanium dioxide for the decolorization was 0.75 g/(equation omitted). The light intensity showed exponential decay with distance. The decay of light intensity of RhB solution showed different tendency from TiO$_2$. These results suggested that the photocatalytic decolorization of dyes may be available method for decolorizing in wastewater.

Cultivation of Chlorella sp. under Different Aeration Conditions Illuminated by Light Emitting Diode (LED 조명을 이용한 광생물 반응기에서 공기 주입량에 따른 클로렐라 성장 연구)

  • Choi, Bo-Ram;Lee, Tae-Yoon
    • KSBB Journal
    • /
    • v.27 no.4
    • /
    • pp.263-267
    • /
    • 2012
  • The purpose of this study was to determine optimum value of aeration rate for the cultivation of Chlorella sp. under illumination of red light emitting diode. The aeration rates varied from 0 to 2.4 vvm under the illumination of 4,400 lux of red light emitting diode. The highest specific growth rate of $1.51\;day^{-1}$ was obtained at the aeration of 0.7 vvm and lower specific growth rates were obtained for other aeration tests. Furthermore, the highest biomass concentration (1.02 g/L) was also obtained at the aeration of 0.7 vvm. Therefore, aeration of 0.7 vvm was determined to be the optimum aeration rate for the cultivation of Chlorella sp. under red light emitting diode.

Changes of plasma melatonin level and testis weight in the seasonal light-period

  • Han, Sang-Zin
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.05a
    • /
    • pp.160-160
    • /
    • 2003
  • Plasma melatonin in the seasonal light-period is circadian rhythmically secreted. Maximal secretion showed at 14 o'clock in summer- and winter-like period, but minimal secretion showed at 5 o'clock in summer-like period and at 8 in winter-like period. These times of minimal secretions were at the beginning of light period. Plasma melatonin in the light period is secreted 62.5% more than in the dark period in summer-like period and 45.9% more in winter-like period. Total plasma melatonin in winter-like period is secreted 56.5% more than in summer-like period. The weights of testis(-20.8%) and body(-7.1%) were reduced in the winter-like period. By the increase of plasma melatonin in mice, body- and testis-weights are decreased, on the contrary by the decrease of plasma melatonin in mice, body and testis weights are increased. In view of the results so far achieved melatonin changes on the body weight and reproductive organ in mice. It is presumed that melatonin effects on the metabolism and sex hormone.

  • PDF

The Correlation of Wavelengths with Heavy Metal Elements on the Circadian Rhythm Conidiation in Neurospora crassa (Neurospora crassa의 포자형성 주기에 미치는 빛파장과 중금속 이온의 영향 관계 조사)

  • 한상진
    • Environmental Analysis Health and Toxicology
    • /
    • v.10 no.3_4
    • /
    • pp.7-13
    • /
    • 1995
  • The most periodlengths($\tau$) of conidiation of Neurospora were shortened in the medium with Li$^+$, Rb$^+$, and Cs$^+$ under the blue or green light. The higher the concentration of the heavy metal elements are, the shorter the circadian lengths are. The largest differences between the maxima- and minima circadian lengths showed in the medium with LiCI, RbCl, and CsCI under the blue lights at 150 Lux, while the little differences of circadian lengths presented in 1 mM heavy metal elements at the 270Lux blue light. Li$^+$ under the blue light effected extremely much and in the order of Rb$^+$ and Cs$^+$ on the conidiation of Neurospora. Under the green lights at 270Lux, the smallest changes of the circadian lengths are resulted in the medium with heavy metal elements. The other way at the green light 150Lux, the conidiation is stimulated by lmM LiCI or RbCl for the average 0.71h and 0.29h longer than the periodlength of control 28.34h. The medium with Li$^+$ under the green light has less effect on the conidiation rhythm of Neurospora than with Rb$^+$ or Cs$^+$.

  • PDF

Changes of Plasma Melatonin Level and Testis Weight in Mice in the Seasonal Light-period (인위적인 계절적 광주기에서 쥐에 나타나는 멜라토닌 분비양상과 정소크기변화 조사)

  • 한상진
    • Environmental Analysis Health and Toxicology
    • /
    • v.18 no.1
    • /
    • pp.57-61
    • /
    • 2003
  • Plasma melatonin in the seasonal light-period is circadian rhythmically secreted. Maximal secretion showed at 14 o'clock in summer- and winter-like period, but minimal secretion showed at 5 o'clock in summer-like period and at 8 in winter-like period. These times of minimal secretions were at the beginning of light period. Plasma melatonin in the light period is secreted 62.5% more than in the dark period in summer- like period and 45.9% more in winter- like period. Total plasma melatonin in winter-like period is secreted 56.5% more than in summer-like period. The weights of testis (-20.8%) and body (-7.1%) were reduced in the winter-like period. By the increase of plasma melatonin in mice, body - and testis -weights are decreased, on the contrary by the decrease of plasma melatonin in mice, body and testis weights are increased. In view of the results so far achieved melatonin changes on the body weight and reproductive organ in mice. It is presumed that melatonin effects on the metabolism and sex hormone.

Effect of Surfactant on Solvent Extraction for Light Hydrocarbon from Soils (토양중 Light Hydrocarbon의 용매추출에 미치는 계면활성제의 영향)

  • Hwang, Keon-Joong;Atalay, Asmare
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.2
    • /
    • pp.74-79
    • /
    • 1998
  • This study was conducted to evaluate the surfactant solutions which influence solvent extraction from light hydrocarbon contaminated soils. Nine characteristic compounds were studied: benzene, toluene, ethylbenzene, o-xylene, mxylene, p-xylene, n-propylbenzene, 1,2,4-trimethylbenzene, and n-butylbenzene which were found in gasoline. Adsee-799 and Witbreak DRA-22 showed some extractive capacity for light hydrocarbons from soil. There was no added advantage obtained by using other surfactants in this study. No removal of contaminants from soil was observed when the surfactant concentration was 0.5 percent or below. When the surfactant concentration was 4 percent, the average recovery for some hydrocarbons was 10.8 percent, which was the best obtained at these levels. There was 10 percent surfactant contribution for methanol extraction from soil with the Witbreak DPG-482 and Witbreak DRA-22. This study provided a useful screening technique for procedures that can be used to remediate soils contaminated with light hydrocarbons.

  • PDF

Degradation of Microcystins during the Decomposition Process of Cyanobacterial Cells (Cyanobacteria의 분해에 따른 Microcystins의 변화)

  • Shin, Jae-Ki;Yim, Seong-A;Choi, Il-Hwan
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.1 s.89
    • /
    • pp.9-22
    • /
    • 2000
  • The decomposition processes of Microcystis aeruginosa under the light and dark conditions were investigated in relation to the change of microcystins, physicochemical and biological factors. Cyanobacterial cells from upper stream of Lake Dae-chong were collected and incubated in the matrix of raw water under the light and dark conditions without additional nutrients. The decomposition of Microcystis cells started from beginning of the experiment and most of the cells were decomposed on 12th day. Under the light condition the concentration of toxins in filtrate fractionwas increased with the increase of viscosity as the decomposition of algal cells proceed whereas no significant change was observed under the dark condition. Microcystin- RR was most labile toxin than the other two microcystins because it was identified mainly in lyophilized cells but detected at trace level in the filtratefraction.

  • PDF

Effects of Light-Quality Control on the Plant Growth in a Plant Factory System of Artificial Light Type (인공광 식물공장내 광질 제어가 작물생육에 미치는 영향)

  • Heo, Jeong-Wook;Baek, Jeong-Hyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.4
    • /
    • pp.270-278
    • /
    • 2021
  • BACKGROUND: Horticultural plant growth under field and/or greenhouse conditions is affected by the climate changes (e.g., temperature, humidity, and rainfall). Therefore investigation of hydroponics on field horticultural crops is necessary for year-round production of the plants regardless of external environment changes under plant factory system with artificial light sources. METHODS AND RESULTS: Common sage (Salvia plebeia), nasturtium (Tropaeolum majus), and hooker chive (Allium hookeri) plants were hydroponically culturing in the plant factory with blue-red-white LEDs (Light-Emitting Diodes) and fluorescent lights (FLs). Leaf numbers of common sage under mixture LED and FL treatments were 134% and 98% greater, respectively than those in the greenhouse condition. In hooker chives, unfolded leaf numbers were 35% greater under the artificial lights and leaf elongation was inhibited by the conventional sunlight compared to the artificial light treatments. Absorption pattern of NO3-N composition in hydroponic solution was not affected by the different light qualities. CONCLUSION(S): Plant factory system with different light qualities could be applied for fresh-leaf production of common sage, nasturtium, and hooker chive plants culturing under field and/or greenhouse. Controlled light qualities in the system resulted in significantly higher hydroponic growth of the plants comparing to conventional greenhouse condition in present.

Nitrate uptake of the red tide dinoflagellate Prorocentrum micans measured using a nutrient repletion method: effect of light intensity

  • Lee, Kyung Ha;Jeong, Hae Jin;Kim, Hye Jeong;Lim, An Suk
    • ALGAE
    • /
    • v.32 no.2
    • /
    • pp.139-153
    • /
    • 2017
  • The ability of a red tide species to take up nutrients is a critical factor affecting its red tide dynamics and species competition. Nutrient uptake by red tide species has been conventionally measured by incubating nutrient-depleted cells for a short period at 1 or 2 light intensities. This method may be applicable to certain conditions under which cells remain in oligotrophic water for a long time and high nutrients are suddenly introduced. Thus, a new method should be developed that can be applicable to the conditions under which cells are maintained in eutrophicated waters in healthy conditions and experience light and dark cycles and different light intensities during vertical migration. In this study, a new repletion method reflecting these conditions was developed. The nitrate uptake rates of the red tide dinoflagellate Prorocentrum micans originally maintained in nitrate repletion and depletion conditions as a function of nitrate concentration were measured. With increasing light intensity from 10 to $100{\mu}E\;m^{-2}s^{-1}$, the maximum nitrate uptake rate ($V_{max}$) of P. micans increased from 3.6 to $10.8 pM\;cell^{-1}d^{-1}$ and the half saturation constant ($K_{s-NO3}$) increased from 4.1 to $6.9{\mu}M$. At $20{\mu}E\;m^{-2}s^{-1}$, the $V_{max}$ and $K_{s-NO3}$ of P. micans originally maintained in a nitrate repletion condition were similar to those maintained in a nitrate depletion condition. Thus, differences in cells under nutrient repletion and depletion conditions may not affect $K_{s-NO3}$ and $V_{max}$. Moreover, different light intensities may cause differences in the nitrate uptake of migratory phototrophic dinoflagellates.

Photocatalysis of o-, m- and p-Xylene Using Element-Enhanced Visible-Light Driven Titanium Dioxide

  • Kim, Jong-Tae;Kim, Mo-Keun;Jo, Wan-Kuen
    • Journal of Environmental Science International
    • /
    • v.17 no.11
    • /
    • pp.1195-1201
    • /
    • 2008
  • Enhancing with non-metallic elemental nitrogen(N) is one of several methods that have been proposed to modify the electronic properties of bulk titanium dioxide($TiO_2$), in order to make $TiO_2$ effective under visible-light irradiation. Accordingly, current study evaluated the feasibility of applying visible-light-induced $TiO_2$ enhanced with N element to cleanse aromatic compounds, focusing on xylene isomers at indoor air quality(IAQ) levels. The N-enhanced $TiO_2$ was prepared by applying two popular processes, and they were coated by applying two well-known methods. For three o-, m-, and p-xylene, the two coating methods exhibited different photocatalytic oxidation(PCO) efficiencies. Similarly, the two N-doping processes showed different PCO efficiencies. For all three stream flow rates(SFRs), the degradation efficiencies were similar between o-xylene and m,p-xylene. The degradation efficiencies of all target compounds increased as the SFR decreased. The degradation efficiencies determined via a PCO system with N-enhanced visible-light induced $TiO_2$ was somewhat lower than that with ultraviolet(UV)-light induced unmodified $TiO_2$, which was reported by previous studies. Nevertheless, it is noteworthy that PCO efficiencies increased up to 94% for o-xylene and 97% for the m,p-xylene under lower SFR(0.5 L $min^{-1}$). Consequently, it is suggested that with appropriate SFR conditions, the visible-light-assisted photocatalytic systems could also become important tools for improving IAQ.