• Title/Summary/Keyword: environmental history

Search Result 1,257, Processing Time 0.029 seconds

Dilatometer test for evaluating deformation characteristics in sand (사질토의 변형특성 평가를 위한 딜라토미터 시험의 활용)

  • Lee, Moon-Joo;Hong, Sung-Jin;Lee, Woo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.241-252
    • /
    • 2010
  • This study investigates the application of dilatometer test for evaluating the deformation characteristics of granular soil. $K_D$ is the most sensitive to the stress history among CPT and DMT measurements, and $E_D$ and $q_c$ are observed to be similarly affected by the stress history. The coefficient of at-rest earth pressure($K_0$) is an indirect measure evaluating the stress history of granular soil. A relation using only DMT indices provides appropriate prediction of $K_0$ values. Although penetration of dilatometer inevitably induces the failure of cementation bonds, $E_D$ reflects the deformation characteristics of undamaged cementation relatively well. Therefore, a slightly better prediction of M value for cemented sand is achieved by using $E_D$ rather than $q_c$. Because of the weaker particle strength of calcareous sand compared than quartz sand, the majority of sand particles adjacent to dilatometer probe will be crushed during penetration. The particle crushing will induce the less contraction of the dilatometer membrane during penetration, consequently, the smaller $K_D$ and $E_D$ of calcareous sand.

  • PDF

Finite element models of reinforced ECC beams subjected to various cyclic deformation

  • Frank, Timothy E.;Lepech, Michael D.;Billington, Sarah L.
    • Computers and Concrete
    • /
    • v.22 no.3
    • /
    • pp.305-317
    • /
    • 2018
  • Steel reinforced Engineered Cementitious Composite (ECC) components have been proposed for seismic structural applications, for example in coupling beams, infill panels, joints, columns, and flexural members. The development of strain in the steel reinforcement of cementitious components has been shown to vary based on both the steel reinforcement ratio and the applied deformation history. Strain in the steel reinforcement of reinforced ECC components is an important structural response metric because ultimate failure is often by fracture of the steel reinforcement. A recently proposed bond-slip model has been successfully calibrated to cyclically tested reinforced ECC beams wherein the deformation history contained monotonically increasing cycles. This paper reports simulations of two-dimensional finite element models of reinforced ECC beams to determine the appropriateness and significance of altering a phenomenological bond-slip model based on the applied deformation history. The numerical simulations with various values of post-peak bond-slip softening stiffness are compared to experimental results. Varying the post-peak bond-slip softening stiffness had little effect on the cracking patterns and hysteretic response of the reinforced ECC flexural models tested, which consisted of two different steel reinforcement ratios subjected to two different deformation histories. Varying the post-peak bond-slip softening stiffness did, however, affect the magnitude of strain and the length of reinforcing bar that strain-hardened. Overall, a numerical model with a constant bond-slip model represented well various responses in reinforced ECC beams with multiple steel reinforcement ratios subjected to different deformation histories.

Long-term population monitoring with population viability analysis of river otter in Korea (홍천강 유역에 서식하는 멸종위기종 수달의 개체군변이분석을 통한 생태모니터링 연구)

  • Lee, Sang-Don
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.5
    • /
    • pp.525-528
    • /
    • 2013
  • River otter(Lutra lutra) are listed as endangered species and Natural monument in Korea, and this study examined the possibility of extinct of river otter in Hongchon river using with the application of Population Viability Analysis (PVA) technique. In Hongchon river areas population was estimated 9 individuals for the last 1999-2005 years and PVA analysis was done for the next 10 years using the average population of 9. Using the initial population the river otter was estimated 30% of extinct for the next 10 years. This estimation was quite low considering water pollution and construction of highways. Also PVA only used population size lacking in other life history information. Nonetheless river otter population can be in risk of extinction if the current construction of crossovers, cement bank are maintained. Long term information regarding life history needs essential.

Estizmation of Structure Stability on the Ground to Vibration from Dual Composite Tunnels (이중 복합터널 상부구조물의 진동에 대한 안정성 평가)

  • Shin, S.M.;Jang, Y.S.;Lee, W.J.;Kwon, S.J.
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1244-1250
    • /
    • 2008
  • The site of interest is a residence redevelopment area which has excavation construction with cut-off walls. The site is located over Dong-Mang-Bong tunnel and Seoul No. 6 subway tunnel. This study analyzed numerically the influence of vibrations from No. 6 subway tunnel to the basement of the redeveloped apartment away from the distance about 11m. Kyoung-bu highspeed railway's time history model with linearly reduced maximum acceleration is applied to take into the subway maximum speed of 75km/h. The maximum velocity of vibration for the cross section of the interest was estimated as 0.28cm/sec which satisfied the allowable standard of 0.5cm/sec for apartment and residence of Seoul.

  • PDF

The Environmental Restoration and Revegetation Technology in Japan - The History of The Japanese Society of Revegetation Technology and the Problems of the Revegetation Technology in Japan - (일본(日本)의 환경(環境) 복원(復元) 녹화(綠化) - 일본녹화공학회의 발자취와 과제 -)

  • Masuda, Takuro
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.1 no.1
    • /
    • pp.110-113
    • /
    • 1998
  • It can be said that the revegetation technology in Japan was started in 1960's when Japan entered into the era of high-growth economy. In the beginning, the revegetation technology was mainly applied on the man made slopes, and with the time, the fields of the revegetation technology have been extended to the urban landscaping, ecosystem conservation, prevention of desertification and so on. With the progress of the revegetation technology and the expansion of its fields, new problems have occurred. In this paper, I introduced the history of The Japanese Society of Revegetation Technology and the present condition, and discussed about the problems of the revegetation technology in Japan.

  • PDF

The 30th Anniversary of the Korean Journal of Aerospace and Environmental Medicine: History, Development, and Vision (항공우주의학회지 창간 30주년을 맞아: 학회지의 역사, 발전, 그리고 비전)

  • Kim, Young Hyo
    • Korean journal of aerospace and environmental medicine
    • /
    • v.31 no.1
    • /
    • pp.4-8
    • /
    • 2021
  • The year 2021 is a significant year in which the Korean Journal of Aerospace and Environmental Medicine (KJAsEM) celebrates its 30th anniversary. Therefore, in this review, we look back on the history and development of KJAsEM and suggest the direction we should go forward. In particular, the recent development of KJAsEM was described in more detail, such as opening the KJAsEM journal homepage, an online submission system, and adopting an open access policy.

Effects of Material Nonlinearity on Seismic Responses of Multistoried Buildings with Shear Walls and Bracing Systems

  • Islam, Md. Rajibul;Chakraborty, Sudipta;Kim, Dookie
    • Architectural research
    • /
    • v.24 no.3
    • /
    • pp.75-84
    • /
    • 2022
  • Scads of earthquake-resistant systems are being invented around the globe to ensure structural resistance against the lateral forces induced by earthquake loadings considering structural safety, efficiency, and economic aspects. Shear wall and Bracing systems are proved to be two of the most viable solutions for seismic strengthening of structures. In the present study, three numerical models of a G+10 storied building are developed in commercial building analysis software considering shear wall and bracing systems for earthquake resistance. Material nonlinearity is introduced by using plastic hinges. Analyses are performed utilizing two dynamic methods: Response Spectrum analysis and nonlinear Time-history analysis using Kobe and Loma Prieta earthquake data and results are compared to observe the nonlinear behavior of structures. The outcomes exposed that a significant increase in the seismic responses occurs due to the nonlinearity in the building systems. It was also found that building with shear wall exhibits maximum resistance and minimum nonlinearity when subjected to dynamic loadings.

Seismic performance evaluation of RC bearing wall structures

  • Rashedi, Seyed Hadi;Rahai, Alireza;Tehrani, Payam
    • Computers and Concrete
    • /
    • v.30 no.2
    • /
    • pp.113-126
    • /
    • 2022
  • Reinforced concrete bearing walls (RCBWs) are one of the most applicable structural systems. Therefore, vulnerability analysis and rehabilitation of the RCBW system are of great importance. In the present study, in order to the more precise investigation of the performance of this structural resistant system, pushover and nonlinear time history analyses based on several assumptions drawing upon experimental research were performed on several models with different stories. To validate the nonlinear analysis method, the analytical and experimental results are compared. Vulnerability evaluation was carried out on two seismic hazard levels and three performance levels. Eventually, the need for seismic rehabilitation with the basic safety objective (BSO) was investigated. The obtained results showed that the studied structures satisfied the BSO of the seismic rehabilitation guidelines. Consequently, according to the results of analyses and the desired performance, this structural system, despite its high structural weight and rigid connections and low flexibility, has integrated performance, and it can be a good option for earthquake-resistant constructions.

Efficiency of various structural modeling schemes on evaluating seismic performance and fragility of APR1400 containment building

  • Nguyen, Duy-Duan;Thusa, Bidhek;Park, Hyosang;Azad, Md Samdani;Lee, Tae-Hyung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2696-2707
    • /
    • 2021
  • The purpose of this study is to investigate the efficiency of various structural modeling schemes for evaluating seismic performances and fragility of the reactor containment building (RCB) structure in the advanced power reactor 1400 (APR1400) nuclear power plant (NPP). Four structural modeling schemes, i.e. lumped-mass stick model (LMSM), solid-based finite element model (Solid FEM), multi-layer shell model (MLSM), and beam-truss model (BTM), are developed to simulate the seismic behaviors of the containment structure. A full three-dimensional finite element model (full 3D FEM) is additionally constructed to verify the previous numerical models. A set of input ground motions with response spectra matching to the US NRC 1.60 design spectrum is generated to perform linear and nonlinear time-history analyses. Floor response spectra (FRS) and floor displacements are obtained at the different elevations of the structure since they are critical outputs for evaluating the seismic vulnerability of RCB and secondary components. The results show that the difference in seismic responses between linear and nonlinear analyses gets larger as an earthquake intensity increases. It is observed that the linear analysis underestimates floor displacements while it overestimates floor accelerations. Moreover, a systematic assessment of the capability and efficiency of each structural model is presented thoroughly. MLSM can be an alternative approach to a full 3D FEM, which is complicated in modeling and extremely time-consuming in dynamic analyses. Specifically, BTM is recommended as the optimal model for evaluating the nonlinear seismic performance of NPP structures. Thereafter, linear and nonlinear BTM are employed in a series of time-history analyses to develop fragility curves of RCB for different damage states. It is shown that the linear analysis underestimates the probability of damage of RCB at a given earthquake intensity when compared to the nonlinear analysis. The nonlinear analysis approach is highly suggested for assessing the vulnerability of NPP structures.

Lead Poisoning: Historical Aspects of a Paradigmatic "Occupational and Environmental Disease"

  • Riva, Michele Augusto;Lafranconi, Alessandra;D'orso, Marco Italo;Cesana, Giancarlo
    • Safety and Health at Work
    • /
    • v.3 no.1
    • /
    • pp.11-16
    • /
    • 2012
  • Lead poisoning is one of the earliest identified and most known occupational disease. Its acute effects have been recognized from antiquity when this condition principally afflicted manual workers and slaves, actually scarcely considered by the medicine of that time. The Industrial Revolution caused an epidemic of metal intoxication, urging scientists and physician of that period to study and identify specific symptoms and organ alterations related to chronic lead poisoning. During the 20th century, the acknowledgment of occupational and environmental toxicity of lead fostered public awareness and legislation to protect health. More recently, the identification of sub-clinical effects have greatly modified the concept of lead poisoning and the approaches of medicine towards this condition. Nowadays, lead poisoning is rarely seen in developed countries, but it still represents a major environmental problem in certain areas. Consequently, it may appear as a paradigm of "occupational and environmental disease," and the history of this condition seems to parallel the historical development of modern "Occupational and Environmental Health" as a more complete medical discipline.