• Title/Summary/Keyword: environmental geochemistry

Search Result 216, Processing Time 0.046 seconds

Mineral Geochemistry of the Albite-Spodumene Pegmatite in the Boam Deposit, Uljin (울진 보암광산의 조장석-스포듀민 페그마타이트의 광물 지화학 조성 연구)

  • Park, Gyuseung;Park, Jung-Woo;Heo, Chul-Ho
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.283-298
    • /
    • 2022
  • In this study, we investigated the mineral geochemistry of the albite-spodumene pegmatite, associated exogreisen, and wall rock from the Boam Li deposit, Wangpiri, Uljin, Gyeongsangbuk-do, South Korea. The paragenesis of the Boam Li deposit consists of two stages; the magmatic and endogreisen stages. In the magmatic stage, pegmatite dikes mainly composed of spodumene, albite, quartz, and K-feldspar intruded into the Janggun limestone formation. In the following endogreisen stage, the secondary fine-grained albite along with muscovite, apatite, beryl, CGM(columbite group mineral), microlite, and cassiterite were precipitated and partly replaced the magmatic stage minerals. Exogreisen composed of tourmaline, quartz, and muscovite develops along the contact between the pegmatite dike and wall rock. The Cs contents of beryl and muscovite and Ta/(Nb+Ta) ratio of CGM are higher in the endogreisen stage than the magmatic stage, suggesting the involvement of the more evolved melts in the greisenization than in the magmatic stage. Florine-rich and Cl-poor apatite infer that the parental magma is likely derived from metasedimentary rock (S-type granite). P2O5 contents of albite in the endogreisen stage are below the detection limit of EDS while those of albite in the magmatic stage are 0.28 wt.% on average. The lower P2O5 contents of the former albite can be attributed to apatite and microlite precipitation during the endogreisen stage. Calcium introduced from the adjacent Janggun formation may have induced apatite crystallization. The interaction between the pegmatite and Janggun limestone is consistent with the gradual increase in Ca and other divalent cations and decrease in Al from the core to the rim of tourmaline in the exogreisen.

Geochemistry of Geothermal Waters in Korea: Environmental Isotope and Hydrochemical Characteristics II. Jungwon and Munkyeong Areas (한반도 지열수의 지화학적 연구: 환경동위원소 및 수문화학적 특성 II. 중원 및 문경 지역)

  • Yun, Seong-Taek;Koh, Yong-Kwon;Choi, Hyen-Su;Youm, Seung-Jun;So, Chil-Sup
    • Economic and Environmental Geology
    • /
    • v.31 no.3
    • /
    • pp.201-213
    • /
    • 1998
  • From the Jungwon and Munkyeong areas which are among the famous producers of the carbonate-type groundwaters in Korea, various kinds of natural waters (deep groundwater, shallow groundwater and surface water) were collected between 1996 and 1997 and were studied for hydrogeochemical and environmental isotope (${\delta}^{34}S_{so4}$, ${\delta}^{18}O$, ${\delta}D$)systematics. Two types of deep groundwaters (carbonate type and alkali type) occur together in the two areas, and each shows distinct hydrogeochemical and environmental isotope characteristics. The carbonate type waters show the hydrochemical feature of the 'calcium(-sodium)-bicarbonate(-sulfate) type', whereas the alkali type water of the 'sodium-bicarbonate type'. The former type waters are characterized by lower pH, higher Eh, and higher amounts of dissolved ions (especialJy, $Ca^{2+}$, $Na^{+}$, $Mg^{2+}$, $HCO_3{^-}$ and $SO_4{^{2-}}$). Two types of deep groundwaters are all saturated or supersaturated with respect to calcite. Two types of deep groundwaters were both derived from pre-thermonuclear (about more than 40 years old) meteoric waters (with lighter 0 and H isotope data than younger waters, i.e., shallow cold groundwaters and surface waters) which evolved through prolonged water-rock interaction. Based on the geologic setting, water chemistry, and environmental isotope data, however, each of these two different types of deep groundwaters represents distinct hydrologic and hydrogeochemical evolution at depths. The carbonate type groundwaters were formed through mixing with acidic waters that were derived from dissolution of pyrites in hydrothermal vein ores (for the Jungwon area water) or in anthracite coal beds (for the Munkyeong area water). If the deeply percolating meteoric waters did not meet pyrites during the circulation, only the alkali type groundwaters would form. This hydrologic and hydrogeochemical model may be successfully applied to the other carbonate type groundwaters in Korea.

  • PDF

Modeling the Fate and Transport of Arsenic in Wetland Sediments (습지 퇴적물에서 비소의 성상과 이동 모의에 관한 수학적 모형)

  • Park, Seok-Soon;Wang, Soo-Kyun
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.4 s.105
    • /
    • pp.434-446
    • /
    • 2003
  • The fate and transport of many trace metals, metalloids, and radionuclides in porous media is closely linked to the biogeochemical reactions that occur as a result of organic carbon being sequentially degraded by different microorganisms using a series of terminal electron acceptors. The spatial distribution of these biogeochemical reactions is affected by processes that are often unique and/or characteristic to a specific environment. Generic model formulations have been developed and applied to simulate the fate and transport of arsenic in two hydrologic settings, permanently flooded freshwater sediments, namely non-vegetated wetland sediments and vegetated wetland sediments. The key physical processes that have been considered are sedimentation, effects of roots on biogeochemistry, advective transport, and differences in mixing processes. Steady-state formulations were applied to the sedimentary environments. Results of numerical simulations show that these physical processes significantly affect the chemical profiles of different electron acceptors, their reduced species, and arsenate as well as arsenite that will result from the degradation of an organic carbon source in the sediments. Even though specific biological transformations are allowed to proceed only in zones where they are thermodynamically favorable, the results show that mixing as well as abiotic reactions can make the profiles of individual electron acceptors overlap and/or appear to reverse their expected order.

Occurrence Characteristics of Bophi Vum Chromite Mineralized Zone in the Northwestern Myanmar (미얀마 북서부 보피붐 크롬철석 광화대의 산출특성)

  • Heo, Chul-Ho;Chi, Se-Jung;Kang, Il-Mo;Jin, Kwang-Min
    • Economic and Environmental Geology
    • /
    • v.47 no.4
    • /
    • pp.351-362
    • /
    • 2014
  • In order to grasp the geological characteristics, the occurrence mode of ore body and development potential of Bophi Vum chromite mineralized zone in northwestern Myanmar, Korea Institute of Geoscience and Mineral Resources(KIGAM) and Department of Geological Survey and Mineral Exploration(DGSE) carried out joint exploration targeting on the $6km^2$ areas within the mineralized zone. Chromitites occur as a major Cr-ore body in the Bophi Vum area, and are enveloped by dunitic peridotites. As a result of geological survey, the geological map of Bophi Vum was drawn in the scale of 1:1,000, and we discovered that the chromitite ores are mainly distributed at the elevation range between 200 and 400 m. The soil geochemistry was conducted by collecting total 114 soil samples in the interval of 50 m after pitting ground surface under 0.7-1 m. Geochemical anomaly maps of Cr, Ni, Fe, and Mn were prepared by ICP-AES.

Geochemistry and Molybdenum Mineralisation of the Shap Granite, Westmorland, Northern England (영국(英國)의 북부(北部) Westmorland 지역(地域)에 분포(分布)한 Snap 화강암(花崗岩)의 지화학적(地火學的) 연구(硏究)와 휘수연석(輝水鉛石)의 광화작용(鑛化作用)에 관(關)한 연구(硏究))

  • Kim, Sahng Yup
    • Economic and Environmental Geology
    • /
    • v.9 no.4
    • /
    • pp.177-212
    • /
    • 1976
  • The Shap granite encloses well developed quartz veins and veinlets containing molybdenite in association with other ore sulphide minerals. The preliminary study of the geochemical aspects of the granite stock and mineralisation of molybdenite in comparison with the porphyry deposits is carried out; the distribution of major, minor and ore metal elements in wall rocks, altered envelope and veins, and the molybdenum mineralisation, mainly in connexion with hydrothermal alteration are discussed. The molybdenite and other ore mineralisation, especially bismuthinite and chalcopyrite, are spatially closely related to the hydrothermal alteration adjacent to the veinings, and are dominant where the strong orthoclase alteration has taken place. A pattern of alteration and mineralisation can be recognised and forms the basic for the subdivision of the quarry into several distinct zones, which correspond with the sequence of alteration and mineralisation. The veins, veinlets and their alteration haloes can be further subdivided into a series of concentric zones.

  • PDF

K-Ar ages and Geochemistry for Granitic and Volcanic Rocks in the Euiseong and Shinryeong Area, Korea (의성-신령지역의 화강암류 및 화산암류에 대한 K-Ar 연대)

  • Kim, Sang Jung;Lee, Hyun Koo;Itaya, Tetsumaru
    • Economic and Environmental Geology
    • /
    • v.30 no.6
    • /
    • pp.603-612
    • /
    • 1997
  • Cretaceous sedimentary-volcanoclastic formations of the Kyeongsang Supergroup were intruded by granitic rocks in the late Cretaceous and early Tertiary. In the Euiseong and Shinryeong area, these intrusives have various compositions including gabbro, diorite,biotite granite and feldspar porphyry. Associated volcanic rocks consist of two chemically distinct types: the bimodal suite of basalt and rhyolite in the Keumseongsan caldera, and the felsic suite of andesite and rhyolite in the Sunamsan-Hwasan calderas. Most rocks are subalkaline, and follow a typical differentiation path of the calc-alkaline magma. The granitic rocks can be distinguished chemically from the volcanics by high Zr/Y ratios. Differences in Zr/Y and K/Y ratios between the two volcanic suites can be accounted for by mantle source and fractionation. Chondrite-normalized trace element abundances of granitic rocks are depleted in Th and K, whereas those of the Keumseongsan rhyolites are depleted in Sr and Ti. Rb, La and Ce is enriched in rhyolites of the Sunamsan-Hwasan calderas. $Rb-SiO_2$ and Rb-Y+Nb discrimination diagrams suggest that the intrusives and volcanics have a volcanic arc setting. K-Ar ages indicate four plutonic episodes : diorite (89 Ma), granite (66~62 Ma), granite and porphyry (55~52 Ma) and gabbro (52~45 Ma), and two volcanisms : bimodal basaltic and rhyolitic volcanism (71~66 Ma) in the Keumseongsan caldera, and felsic andesitic and rhyolitic volcanism (61~54 Ma) in the Sunamsan-Hwasan calderas. Geochemical and age data thus suggest that the igneous rocks are related to several geologic episodes during the late Cretaceous to early Tertiary.

  • PDF

Environmental Characteristics of Groundwater for Sedimetary Rocks in Daegu City (대구시 퇴적암 분포 지역의 지하수에 대한 환경지화학적 특성)

  • 이인호;조병욱;이병대
    • The Journal of Engineering Geology
    • /
    • v.13 no.1
    • /
    • pp.1-16
    • /
    • 2003
  • Geochemical characteristics of groundwater in the different kinds of various lithology such as Haman formation, Panyaweol formation, Jusan andesitic formation and Palgongsan granite is distinguished by mineralogical and chemical compositions. The Concentration of the majority of solutes in groundwaters of Haman and Panyaweol formation is higher than in that of andesite and granite. Higher concentration of $HCO_3^{-}{\;}and{\;}SO_4^{2-}$ anions in the groundwater is peculiar. High concentrations of $Ca^{2+},{\;}Mg^{2+},{\;}HCO_3^{-}$ in the groundwaters of the sedimentary rocks result mainly from reaction of $CO^{2-}$ charged water with calcite and weathered feldspars. With the Piper diagram, the groundwaters of Haman formations are mainly plotted in $CaSO_4-CaCl_2$ type, whereas those of Panyaweol formations are plotted in the bothside of $Ca(HCO_3)_2{\;}and{\;}CaSO_4-CaCl_2$ type. Thses two different types of $Ca(HCO_3)_2{\;}and{\;}CaSO_4-CaCl_2$ groundwater were originated from dissolution of calcite($Ca(HCO_3)_2)$ and the oxidation of pyrite($CaSO_4-CaCl_2$), respectively. And it also is influenced by anthropogenic contamination. Three factors were extracted from the factor analysis for chemical data. Factor 1, controlled by $SO_4^{2-},{\;}Na^{+},{\;}Ca^{2+}$ and Fe, explains the dissolution of calcite, plagioclase and oxidation of pyrite. Factor 2, controlled by $HCO_3^{-}{\;}and{\;}Mg^{2+}$, mainly explains the dissolution of Mg-carbonates and dolomitization. Factor 3, controlled by $Cl^{-},{\;}K^{+}{\;}and{\;}NO_3^{-}$, is subject to the influence of artificial pollution including industrial waste water disposal. In this study area, some industrial complex which is close to Keumho river show the higher score of factor 3.

The Characteristics of Organic Matter in the Quaternary Sediments from ODP Leg 127 Site 794A, East Sea (동해 ODP Leg 127 Site 794A에서 채취한 제4기 퇴적물의 유기지화학적 특성 연구)

  • Lee Sang Il;Lee Young-Joo;Kim Ji Hoon;Oh Jae Ho;Yun HyeSu
    • Economic and Environmental Geology
    • /
    • v.38 no.6 s.175
    • /
    • pp.707-716
    • /
    • 2005
  • Organic geochemical analyses including Rock-Eval pyrolysis, elemental analysis and stable carbon isotope analysis were performed to evaluate the characteristics of organic matter in the ODP Leg 127 Site 794A sediments and to understand paleoceanographic changes. Based on the TOC contents, C/N ratio, HI vs. OI, $\delta^{13}C_{org}$ and C/S ratio, results imply that dark layers containing a large amount of terrigenous organic matter were deposited under the suboxic/anoxic conditions, whereas the light layers containing largely marine organic matter were deposited under the oxic conditions. These results indicate that increasing surface-productivity by the input of a large amount of terrigenous organic matter from adjacent continent led to the deposition of dark layers during the interglacial highstands, whereas marine primary production and dilution caused by Kosa from the China desert area led to the deposition of light layers with the decreased to terrigenous organic matter during the glacial lowstands.

Study on Phase Relation and Synthesis of Pyrochlore in the System of Ca-Ce-Zr-Ti-O (Ca-Ce-Zr-Ti-O System에서의 파이로클로어 합성 및 상관계에 대한 연구)

  • Chae Soo-Chun;Bae In-Kook;Jang Young-Nam;Yudintsev S.V.
    • Economic and Environmental Geology
    • /
    • v.37 no.6 s.169
    • /
    • pp.603-612
    • /
    • 2004
  • Pyrochlore is known as one of the most promising materials for the immobilization of radionuclide in high level waste. This study included the synthesis, phase relation and characteristics of $pyrochlore(CaCeZr_xTi_{2-x}O_{7,\;x=0.2\~2.0)$ in the system of Ca-Ce-Zr-Ti-O. Using the CPS(Cold pressing and sintering) method, the mixtures of $CaCO3_,\;CeO_2,\;ZrO_2\;and\;TiO_2$ oxides were pressed, and sintered at $1100\~1600^{\circ}C$ for 20 hours. The optimal synthetic conditions at various compositions were differed from 1300 to $1600^{\circ}C$ Even in the optimal temperatures, pyrochlore or fluorite coexisted with minor amount of perovskite, $CeO_2\;or\;Ce_{0.75}Zr_{0.25}O_2$. It was confirmed that pyrochlore and fluorite structures were stable at $x\leq0.6\;and\;x\geq1.0$, respectively. Especially, the compositions of pyrochlore or fluorite showed non-stoichiometric compositions in that contents of Ca and Ti were more deficient and those of Zr and Ce were more excess than batch compositions with the increase of x value. These characteristics stemmed from the behavior of elements occupied at eight- and six-coordinated site, and then caused the coexistence of perovskite, $CeO_2\;or\;Ce_{0.75}Zr_{0.25}O_2$ along with pyrochlore or fluorite.

Geochemistry and K-Ar Age of the Imog Granite at the southwestern Part of the Hambaeg Basin, Korea (함백분지(咸白盆地) 남서부(南西部)에 분포(分布)하는 이목화강암(梨木花崗岩)의 지화학(地化學) 및 K-Ar 연대측정(年代測定))

  • Hong, Young Kook
    • Economic and Environmental Geology
    • /
    • v.19 no.2
    • /
    • pp.97-107
    • /
    • 1986
  • The Cretaceous Imog granite is a calc·alkaline, subsolvus monzogranite and shows characteristics of "I-type" and "magnetite·series" granite by mineralogy and chemical composition. Many of the major and trace element characteristic of the Imog granite are consistent with a relationship by fractional crystallization of a basic magma. The primary magma of the granite derived from the subduction of oceanic crust at the destructive plate margin. The granite shows light REE enrichment with (Ce/Yb)N ratios of 7.77~12.55. All the REE patterns show Eu negative anomalies ($Eu/Eu^*=0.69$) in the pluton. The Imog granite at the southwestern part of the Hambaeg basin may be intruded along the tectonic intersections of the E-W and N-S lines such as deep faults and fractures. Radiometric age determination on the granite reveals as $96.7{\pm}2.0Ma$ by K-Ar dating on biotite.

  • PDF