• Title/Summary/Keyword: environmental DNA

Search Result 1,807, Processing Time 0.043 seconds

A Horsehair Worm, Gordius sp. (Nematomorpha: Gordiida), Passed in a Canine Feces

  • Hong, Eui-Ju;Sim, Cheolho;Chae, Joon-Seok;Kim, Hyeon-Cheol;Park, Jinho;Choi, Kyoung-Seong;Yu, Do-Hyeon;Yoo, Jae-Gyu;Park, Bae-Keun
    • Parasites, Hosts and Diseases
    • /
    • v.53 no.6
    • /
    • pp.719-724
    • /
    • 2015
  • Nematomorpha, horsehair or Gordian worms, include about 300 freshwater species in 22 genera (Gordiida) and 5 marine species in 1 marine genus (Nectonema). They are parasitic in arthropods during their juvenile stage. In the present study, the used gordian worm was found in the feces of a dog (5-month old, male) in July 2014. Following the worm analysis using light and scanning electron microscopes, the morphological classification was re-evaluated with molecular analysis. The worm was determined to be a male worm having a bi-lobed tail and had male gonads in cross sections. It was identified as Gordius sp. (Nematomorpha: Gordiidae) based on the characteristic morphologies of cross sections and areole on the cuticle. DNA analysis on 18S rRNA partial sequence arrangements was also carried out, and the gordiid worm was assumed to be close to the genus Gordius based on a phylogenic tree analysis.

Direct Analysis in Real Time Mass Spectrometry (DART-MS) Analysis of Skin Metabolome Changes in the Ultraviolet B-Induced Mice

  • Park, Hye Min;Kim, Hye Jin;Jang, Young Pyo;Kim, Sun Yeou
    • Biomolecules & Therapeutics
    • /
    • v.21 no.6
    • /
    • pp.470-475
    • /
    • 2013
  • Ultraviolet (UV) radiation is a major environmental factor that leads to acute and chronic reactions in the human skin. UV exposure induces wrinkle formation, DNA damage, and generation of reactive oxygen species (ROS). Most mechanistic studies of skin physiology and pharmacology related with UV-irradiated skin have focused on proteins and their related gene expression or single-targeted small molecules. The present study identified and analyzed the alteration of skin metabolites following UVB irradiation and topical retinyl palmitate (RP, 5%) treatment in hairless mice using direct analysis in real time (DART) time-of-flight mass spectrometry (TOF-MS) with multivariate analysis. Under the negative ion mode, the DART ion source successfully ionized various fatty acids including palmitoleic and linolenic acid. From DART-TOF-MS fingerprints measured in positive mode, the prominent dehydrated ion peak (m/z: 369, M+H-$H_2O$) of cholesterol was characterized in all three groups. In positive mode, the discrimination among three groups was much clearer than that in negative mode by using multivariate analysis of orthogonal partial-least squares-discriminant analysis (OPLS-DA). DART-TOF-MS can ionize various small organic molecules in living tissues and is an efficient alternative analytical tool for acquiring full chemical fingerprints from living tissues without requiring sample preparation. DART-MS measurement of skin tissue with multivariate analysis proved to be a powerful method to discriminate between experimental groups and to find biomarkers for various experiment models in skin dermatological research.

Breeding of the native vegetables using the biotechnology

  • Iwamoto, Yuzuri
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2005.11a
    • /
    • pp.106-111
    • /
    • 2005
  • For breeding of a new rootstock for eggplant production, somatic hybrids between two species, Solanum integrifolium and S. sanitwongsei were obtained through protoplast fusion. The former species has been commonly used for rootstock for eggplant production in Japan. Eggplants on these rootstocks are more productive than ungrafted plants, but are susceptible to bacterial wilt caused Ralstonia solanacearum. While the latter species is resistant, the growth of eggplants on this rootstock is rather slow and low yield. Protoplast of both species were isolated from cotyledons, and inactivated with iodoacetamide or UV-irradiation, then fused electrically. The fused products were then cultured. Regenerated plantlets were then transplanted on soil then maintained in a green house. The plants were classified into four groups. Those in the first group showed morphological characters intermediate of the parentalspecies. The plants bore fruit with viable seeds. The plants showed a chromosome number of 2n=48, the sum of those of the parental species, and are suggested to be symmetric fusion products. While plants in the other groupswas less vigorous and showed chromosome number 2n= 68 to 72 suggesting asymmetric fusion products by genomic in situ hybridization(GISH). Isozyme pattern of shikimate dehydrogenase (SKDH; EC 1.1.1.25), isocitrate dehydrogenase (IDH; EC 1.1.1.41) and phosphoglucomutase (PGM; EC 2.7.5.1) showed that 24 regenerated plants in three groups were somatic hybrids. Analysis of random amplified polymorphic DNA (RAPD) showed that 43 S. integrifolium-specific and 57 S. sanitwongsei-specific bands were all found in 24 plants. Both somatic hybrids and its S1 plants were found to be resistant to bacterial wilt, and eggplant grafted these plants using for rootstocks were more productive than grafted mother plants. Now, S1 progenies are used for commercial eggplant production in Osaka Prefecture.

  • PDF

Biochemical Characterization of Transgenic Tobacco Plants Expressing a Human Dehydroascorbate Reductase Gene

  • Kwon, Suk-Yoon;Ahn, Young-Ock;Lee, Haeng-Soon;Kwak, Sang-Soo
    • BMB Reports
    • /
    • v.34 no.4
    • /
    • pp.316-321
    • /
    • 2001
  • Dehydroascorbate (DHA) reductase (DHAR, EC 1.8.5.1) catalyzes the reduction of DHA to reduced ascorbate (AsA) using glutathione (GSH) as the electron donor in order to maintain an appropriate level of ascorbate in plant cells. To analyze the physiological role of DHAR in environmental stress adaptation, we developed transgenic tobacco (Nicotiana tabacum cv. Xanthi) plants that express a human DHAR gene isolated from the human fetal liver cDNA library in the chloroplasts. We also investigated the DHAR activity, levels of ascorbate, and GSH. Two transgenic plants were successfully developed by Agrobacterium-mediated transformation and were confirmed by PCR and Southern blot analysis. DHAR activity and AsA content in mature leaves of transgenic plants were approximately 1.41 and 1.95 times higher than in the non-transgenic (NT) plants, respectively In addition, the content of oxidized glutathione (GSSG) in transgenic plants was approximately 2.95 times higher than in the NT plants. The ratios of AsA to DHA and GSSG to GSH were changed by overexpression of DHAR, as expected, even though the total content of ascorbate and glutathione was not significantly changed. When tobacco leaf discs were subjected to methyl viologen at $5\;{\mu}M$, $T_0$ transgenic plants showed about a 50% reduction in membrane damage compared to the NT plants.

  • PDF

Comparison of Two Feather-Degrading Bacillus Licheniformis Strains

  • Lin, Xiang;Lee, Soo-Won;Bae, Hee Dong;Shelford, Jim A.;Cheng, Kuo-Joan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.12
    • /
    • pp.1769-1774
    • /
    • 2001
  • Bacillus licheniformis strains L-25 and PWD-1 are two thermophilic feather-degrading bacteria. Despite isolated from different environmental conditions, they were both capable of breaking down chicken feathers and growing in a medium in which feather was the only source of carbon and nitrogen. A 1.46-kb keratinase gene (ker B) was isolated from strain L-25 by a polymerase chain reaction (PCR) using L-25 genomic DNA as templates. Sequencing results reveal that ker B shares great sequence identity with a previously published keratinase gene of B. licheniformis PWD-1 (ker A). Only two amino acids differences were found in the deduced amino acid sequence between the keratinases from L-25 and PWD-1. However several nucleotide changes were found upstream of the putative promoter region. Protease inhibition studies indicated that neutral protease activity accounted for approximate 25 to 30% of total extracellular proteolytic activity produced by strain L-25 in the feather medium. In contrast, no measurable neutral protease activity was produced by strain PWD-1 in the feather medium. When glucose (1%), a common catabolic repressor, was added into the feather medium, L-25 was still able to grow and produce keratinase. Strain PWD-1 produced no neutral protease activity and its growth was severely inhibited in the feather medium containing glucose. L-25 produced an enhanced level of keratinase in the feather medium in comparison with PWD-1.

Effect of Maternal Passive Autoimmunization against Myostatin on Growth Performance in Chickens

  • Moon, Y.S.;Lee, H.G.;Yin, Y.H.;Jin, X.;Hong, Z.S.;Cho, J.S.;Kim, S.C.;You, S.K.;Jin, D.I.;Han, J.Y.;Choi, Y.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.7
    • /
    • pp.1017-1021
    • /
    • 2005
  • Myostatin is a negative regulator of skeletal muscle growth and a loss of functional myostatin protein increases muscle hypertrophy and hyperplasia in cattle. The present study was conducted to investigate whether maternal passive immunization against myostatin would improve growth performance in chickens. A complete broiler myostatin cDNA was cloned and it was expressed into two transcripts as 1,128 bp and 985 bp by alternative splicing. A conjugated mature myostatin (350 bp) was used to induce autoimmunization and maternal passively immunized chickens was used for the experiment. It was confirmed that there was a maternal passive immunization against myostatin at zero weeks of age, but its effect was reduced by 6 weeks of age. The auto-immunized groups showed smaller body weights than those of control group during the growing period and the difference was getting bigger with time until 6 weeks of age. These results suggest that passive autoimmunization against myostatin used in this study is not potent enough to stimulate growth performance in chickens.

Molecular Characterization of Regulatory Genes Associated with Biofilm Variation in a Staphylococcus aureus Strain

  • Kim, Jong-Hyun;Kim, Cheorl-Ho;Hacker, Jorg;Ziebuhr, Wilma;Lee, Bok-Kwon;Cho, Seung-Hak
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.28-34
    • /
    • 2008
  • Biofilm formation in association with the intercellular adhesion (icaADBC) gene cluster is a serious problem in nosocomial infections of Staphylococcus aureus. In all 112 S. aureus strains tested, the ica genes were present, and none of these strains formed biofilms. The biofilm formation is known to be changeable by environmental factors. We have found about 30% of phase variation in these strains with treatment of tetracycline, pristinamycin, and natrium chloride. However, this phenotype disappeared without these substances. Therefore, we have constructed stable biofilm-producing variants through a passage culture method. To explain the mechanism of this variation, nucleotide changes of ica genes were tested in strain S. aureus 483 and the biofilm-producing variants. No differences of DNA sequence in ica genes were found between the strains. Additionally, molecular analysis of three regulatory genes, the accessory gene regulator (agr) and the staphylococcal accessory regulator (sarA), and in addition, alternative transcription factor ${\sigma}^B$ (sigB), was performed. The data of Northern blot and complementation showed that SigB plays an important role for this biofilm variation in S. aureus 483 and the biofilm-producing variants. Sequence analysis of the sigB operon indicated three point mutations in the rsbU gene, especially in the stop codon, and two point mutations in the rsbW gene. This study shows that this variation of biofilm formation in S. aureus is deduced by the role of sigB, not agr and sarA.

Virulence, Resistance Genes, and Transformation Amongst Environmental Isolates of Escherichia coli and Acinetobacter spp.

  • Doughari, Hamuel James;Ndakidemi, Patrick Alois;Human, Izanne Susan;Benade, Spinney
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.1
    • /
    • pp.25-33
    • /
    • 2012
  • The association of verotoxic E. coli and Acinetobacter spp. with various antibiotic-resistant, diarrhogenic, and nosocomial infections has been a cause for concern worldwide. E. coli and A. haemolyticus isolated on a number of selective media were screened for virulence factors, antibiotic resistance, and transformation of resistance genes. Out of 69 E. coli isolates obtained, 25 (35.23%), 14 (20.30%), and 28 (40.58%) were positive for Vtx1&2, Vtx1, and Vtx2, respectively, 49 (71.015%) for extendedspectrum beta-lactamases (ESBLs), 34 (49.28%) for serum resistance, 57 (82.61%) for cell surface hydrophobicity, 48 (69.57%) for gelatinase production, and 37 (53.62%) for hemolysin production. For the 14 A. haemolyticus isolates, only 2 (14.29%) in each case from all the samples investigated were positive for Vtx1, Vtx2 and Vtx1&2 respectively, 8 (57.14%) for ESBLs, 7 (50.00%) for serum resistance, 11 (78.57%) for cell surface hydrophobicity, 4 (28.57%) for gelatinase production, and 8 (57.14%) for hemolysin production. Although transformation occurred among the E. coli and Acinetobacter isolates (transformation frequency: $13.3{\times}10^{-7}-53.4^{-7}$), there was poor curing of the plasmid genes, a confirmation of the presence of stable antibiotic-resistant genes (DNA concentration between 42.7 and 123.8 ${\mu}g$) and intragenetic transfer of multidrug-resistant genes among the isolates. The isolates were potentially virulent and contained potentially transferable antibiotic resistance genes. Detection of virulence factors, antibiotic resistance genes, and transformation among these isolates is a very significant outcome that will influence approaches to proactive preventive and control measures and future investigations. However, continued surveillance for drug resistance among these bacteria and further investigation of the mechanism of action of their virulence factors are a necessity.

Induced Pluripotent Stem Cell Generation using Nonviral Vector

  • Park, Si-Jun;Shin, Mi-Jung;Seo, Byoung-Boo;Park, Hum-Dai;Yoon, Du-Hak;Ryoo, Zae-Young
    • Reproductive and Developmental Biology
    • /
    • v.35 no.4
    • /
    • pp.449-455
    • /
    • 2011
  • Induced pluripotent stem (iPS) cells have been generated from mouse and human somatic cells by etopic expression of transcription factors. iPS cells are indistinguishable from ES cells in terms of morphology and stem cell marker expression. Moreover, mouse iPS cells give rise to chimeric mice that are competent for germline transmission. However, mice derived from iPS cells often develop tumors. Furthermore, the low efficiency of iPS cell generation is a big disadvantage for mechanistic studies. Nonviral plasmid.based vectors are free of many of the drawbacks that constrain viral vectors. The histone deacetylase inhibitor valproic acid (VPA) has been shown to improve the efficiency of mouse and human iPS cell generation, and vitamin C (Vc) accelerates gene expression changes and establishment of the fully reprogrammed state. The MEK inhibitor PD0325901 (Stemgent) has been shown to increase the efficiency of the reprogramming of human primary fibroblasts into iPS cells. In this report, we described the generation of mouse iPS cells devoid of exogenous DNA by the simple transient transfection of a nonviral vector carrying 2A-peptide-linked reprogramming factors. We used VPA, Vc, and the MEK inhibitor PD0325901 to increase the reprogramming efficiency. The reprogrammed somatic cells expressed pluripotency markers and formed EBs.

Cytocidal Effect of TALP-32 on Human Cervical Cancer Cell HeLa (TALP-32의 인체자궁암 세포주 HeLa에 대한 세포독성)

  • Park, Ji-Hoon;Kim, Jong-Seok;Yun, Eun-Jin;Song, Kyoung-Sub;Seo, Kang-Sik;Kim, Hoon;Jung, Yeon-Joo;Yun, Wan-Hee;Lim, Kyu;Hwang, Byoung-Doo;Park, Jong-Il
    • Toxicological Research
    • /
    • v.22 no.4
    • /
    • pp.315-322
    • /
    • 2006
  • TALP-32 is highly basic protein with a molecular weight of 32 kDa purified from human term placenta. Some basic proteins such as defensins and cecropins are known to induce cell death by increasing membrane permeability and some of them are under development as an anticancer drug especially targeting multi-drug resistant cancers. Therefore, we investigated cytotoxic effect and mechanism of TALP-32 When HeLa cell was incubated with TALP-32, cytotoxicity was increased in time and dose dependent manner. As time goes by, HeLa cells became round and plasma membrane was ruptured. Increase of plasma membrane permeability was determined with LDH release assay. Also in transmission electron microscopy, typical morphology of necrotic cell death, such as cell swelling and intracellular organelle disruption was observed, but DNA fragmentation and caspase activation was not. And necrotic cell death was determined with Annexin V/Pl staining. The cytotoxicity of TALP-32 was minimal and decreased or RBC and Hep3B respectively. These data suggests that TALP-32 induces necrosis on rapidly growing cells but not on slowly growing cells implicating the possibility of its development of anticancer peptide drug.