• Title/Summary/Keyword: environmental DNA

Search Result 1,807, Processing Time 0.035 seconds

Effects of Disease Resistant Genetically Modified Rice on Soil Microbial Community Structure According to Growth Stage

  • Sohn, Soo-In;Oh, Young-Ju;Ahn, Jae-Hyung;Kang, Hyeon-jung;Cho, Woo-Suk;Cho, Yoonsung;Lee, Bum Kyu
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.3
    • /
    • pp.185-196
    • /
    • 2019
  • BACKGROUND: This study investigated the effects of rice genetically modified to be resistant against rice blast and rice bacterial blight on the soil microbial community. A comparative analysis of the effects of rice genetically modified rice choline kinase (OsCK1) gene for disease resistance (GM rice) and the Nakdong parental cultivar (non-GM rice) on the soil microbial community at each stage was conducted using rhizosphere soil of the OsCK1 and Nakdong rice. METHODS AND RESULTS: The soil chemistry at each growth stage and the bacterial and fungal population densities were analyzed. Soil DNA was extracted from the samples, and the microbial community structures of the two soils were analyzed by pyrosequencing. No significant differences were observed in the soil chemistry and microbial population density between the two soils. The taxonomic analysis showed that Chloroflexi, Proteobacteria, Firmicutes, Actinobacteria, and Acidobacteria were present in all soils as the major phyla. Although the source tracking analysis per phylogenetic rank revealed that there were differences in the bacteria between the GM and non-GM soil as well as among the cultivation stages, the GM and non-GM soil were grouped according to the growth stages in the UPGMA dendrogram analysis. CONCLUSION: The difference in bacterial distributions between Nakdong and OsCK1 rice soils at each phylogenetic level detected in microbial community analysis by pyrosequencing may be due to the genetic modification done on GM rice or due to heterogeneity of the soil environment. In order to clarify this, it is necessary to analyze changes in root exudates along with the expression of transgene. A more detailed study involving additional multilateral soil analyses is required.

Effects of Pahs and Pcbs and Their Toxic Metabolites on Inhibition of Gjic and Cell Proliferation in Rat Liver Epithelial Wb-F344 Cells

  • Miroslav, Machala;Jan, Vondracek;Katerina, Chramostova;Lenka, Sindlerova;Pavel, Krcmar;Martina, Pliskova;Katerina, Pencikova;Brad, Upham
    • Environmental Mutagens and Carcinogens
    • /
    • v.23 no.2
    • /
    • pp.56-62
    • /
    • 2003
  • The liver progenitor cells could form a potential target cell population fore both tumor-initiating and -promoting chemicals. Induction of drug-metabolizing and antioxidant enzymes, including AhR-dependent CYP1A1, NQO-1 and AKR1C9, was detected in the rat liver epithelial WB-F344 "stem-like" cells. Additionally, WB-F344 cells express a functional, wild-type form of p53 protein, a biomarker of genotoxic events, and connexin 43, a basic structural unit of gap junctions forming an important type of intercellular communication. In this cellular model, two complementary assays have been established for detection of the modes of action associated with tumor promotion: inhibition of gap junctional intercellular communication (GJIC) and proliferative activity in confluent cells. We found that the PAHs and PCBs, which are AhR agonists, released WB-F344 cells from contact inhibition, increasing both DNA synthesis and cell numbers. Genotoxic effects of some PAHs that lead to apoptosis and cell cycle delay might interfere with the proliferative activity of PAHs. Contrary to that, the nongenotoxic low-molecular-weight PAHs and non-dioxin-like PCB congeners, abundant in the environment, did not significantly affect cell cycle and cell proliferation; however both groups of compounds inhibited GJIC in WB-F344 cells. The release from contact inhibiton by a mechanism that possibly involves the AhR activation, inhibition of GJIC and genotoxic events induced by environmental contaminants are three important modes of action that could play an important role in carcinogenic effects of toxic compounds. The relative potencies to inhibit GJIC, to induce AhR-mediated activity, and to release cells from contact inhibition were determined for a large series of PAHs and PCBs and their metabolites. In vitro bioassays based on detection of events on cellular level (deregulation of GJIC and/or proliferation) or determination of receptor-mediated activities in both ?$stem-like^{\circ}{\times}$ and hepatocyte-like liver cellular models are valuable tools for detection of modes of action of polyaromatic hydrocarbons. They may serve, together with concentration data, as a first step in their risk assessment.

  • PDF

Inoculation Effect of Methanotrophs on Rhizoremediation Performance and Methane Emission in Diesel-Contaminated Soil

  • Ji Ho Lee;Hyoju Yang;Kyung-Suk Cho
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.7
    • /
    • pp.886-894
    • /
    • 2023
  • During the rhizoremediation of diesel-contaminated soil, methane (CH4), a representative greenhouse gas, is emitted as a result of anaerobic metabolism of diesel. The application of methantrophs is one of solutions for the mitigation CH4 emissions during the rhizoremediation of diesel-contaminated soil. In this study, CH4-oxidizing rhizobacteria, Methylocystis sp. JHTF4 and Methyloversatilis sp. JHM8, were isolated from rhizosphere soils of tall fescue and maize, respectively. The maximum CH4 oxidation rates for the strains JHTF4 and JHM8 were 65.8 and 33.8 mmol·g-DCW-1·h-1, respectively. The isolates JHTF4 and JHM8 couldn't degrade diesel. The inoculation of the isolate JHTF4 or JHM8 significantly enhanced diesel removal during rhizoremediation of diesel-contaminated soil planted with maize for 63 days. Diesel removal in the tall fescue-planting soil was enhanced by inoculating the isolates until 50 days, while there was no significant difference in removal efficiency regardless of inoculation at day 63. In both the maize and tall fescue planting soils, the CH4 oxidation potentials of the inoculated soils were significantly higher than the potentials of the non-inoculated soils. In addition, the gene copy numbers of pmoA, responsible for CH4 oxidation, in the inoculated soils were significantly higher than those in the non-inoculated soils. The gene copy numbers ratio of pmoA to 16S rDNA (the ratio of methanotrophs to total bacteria) in soil increased during rhizoremediation. These results indicate that the inoculation of Methylocystis sp. JHTF4 and Methyloversatilis sp. JHM8, is a promising strategy to minimize CH4 emissions during the rhizoremediation of diesel-contaminated soil using maize or tall fescue.

Copper Tolerance of Novel Rhodotorula sp. Yeast Isolated from Gold Mining Ore in Gia Lai, Vietnam

  • Kim Cuc Thi Nguyen;Phuc Hung Truong;Cuong Tu Ho;Cong Tuan Le;Khoa Dang Tran;Tien Long Nguyen;Manh Tuan Nguyen;Phu Van Nguyen
    • Mycobiology
    • /
    • v.51 no.6
    • /
    • pp.379-387
    • /
    • 2023
  • In this study, twenty-five yeast strains were isolated from soil samples collected in the gold mining ore in Gia Lai, Vietnam. Among them, one isolate named GL1T could highly tolerate Cu2+ up to 10 mM, and the isolates could also grow in a wide range of pH (3-7), and temperature (10-40 ℃). Dried biomass of GL1 was able to remove Cu2+ effectively up to 90.49% with a maximal biosorption capacity of 18.1 mg/g at pH 6, temperature 30 ℃, and incubation time 60 min. Sequence analysis of rDNA indicated this strain was closely related to Rhodotorula mucilaginosa but with 1.53 and 3.46% nucleotide differences in the D1/D2 domain of the 28S rRNA gene and the ITS1-5.8S rRNA gene-ITS2 region sequence, respectively. Based on phylogenetic tree analysis and the biochemical characteristics, the strain appears to be a novel Rhodotorula species, and the name Rhodotorula aurum sp. nov. is proposed. This study provides us with more information about heavy metal-tolerant yeasts and it may produce a new tool for environmental control and metal recovery operations.

Population Characteristics of the Venomous Giant Jellyfish, Nemopilema nomurai, found in the Yellow and Northern East China Seas (황해 중앙부와 동중국해 북부 해역에서의 대형 독성 노무라입깃해파리의 개체군 특성 연구)

  • Soo-Jung Chang;Jang-Seu Ki
    • Journal of Environmental Science International
    • /
    • v.33 no.1
    • /
    • pp.87-95
    • /
    • 2024
  • The giant jellyfish, Nemopilema nomurai, is an endemic species found in Northeast Asian waters and their population structures, such as size and genetics, and their environmental characteristics were investigated. N. nomurai was obtained from the Yellow and Northern East China Seas during the summers of 2006, 2007, and 2009. In the northern Yellow Sea, small-sized jellyfish were found to be dominant and towards the southern seas, the size of the jellyfish increased. In the northern East China Sea, only one mode of jellyfish was found in May, and the number of modes increased up-to five in July. However, at the center of the Yellow Sea, one or two modes were found in July, 2007. Thus, different jellyfish populations were present in the northern East China Sea and the Yellow Sea. However, based on first appearance and a cohort analysis using the bell diameter, the jellyfish population in the northern Yellow Sea might be recognized as a distinct group that differed from those found in the northern East China Sea. Furthermore, mitochondrial DNA sequences (cytochrome c oxidase subunit I) of N. nomurai were, determined and compared with genetic structures obtained from jellyfish in the Yellow Sea. The genetic diversity of N. nomurai was highest in the regions around the northern East China Sea and at the center of the Yellow Sea and was the lowest around the northern Yellow Sea. Thus, N. nomurai populations in the Yellow Sea and northern East China Sea might be different concerning their seeding places.

Effect of Starvation on Some Parameters in Rhynchocypris oxycephalus (Sauvage and Dabry): A Review (버들치, Rhynchocypris oxycephalus (Sauvage and Dabry) 기아시 일부형질에서의 효과: 개관)

  • Park In-Seok
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.3
    • /
    • pp.351-368
    • /
    • 2004
  • Following the previous experiments, a starvation experiment was conducted to determine the influence of feeding and starvation on the histological and biochemical changes, the morphormetric changes in the sectioned body and the morphometric changes in Rhynchocypris oxycephalus (Sauvage and Dabry). The influence of starvation on nutritional conditions of the histological changes of hepatocyte and intestinal epithelium as hepatosmatic index (HSI), protein, RNA and DNA concentrations of liver in R. oxycephalus was tested. Although the starved group showed higher concentrations of protein, DNA and RNA than the fed group, food deprivation resulted in a decrease in the HSI, hepatocyte nucleus size and nuclear height of the intestinal epithelium. The RNA - DNA ratio appears to be a useful index of nutritional status in R. oxycephalus and may be useful for determining if R. oxycephalus is in a period of rapid or slow growth at the time of sampling. Additionally, the data have been interpreted in detail and some biologically important relationships discussed. The effects of starvation on the morphometrical changes in sectioned body traits, condition factor, viscera index and dressing percentage were determined for evaluating nutritional conditions of R. oxycephalus. Starvation for nine weeks resulted in a decrease in most sectioned traits as well as in condition factor and viscera index (P<0.05). These findings suggest that nutritional parameters used in this study appear to be a useful index for nutritional status in this species. The data has been interpreted in detail and some important body sectioned values of interest to commercial growers discussed. A 75-day study was conducted to determine the effect of starvation on classical and truss parameters in R. oxycephalus. Truss dimensions of almost the entire head and trunk region as well as the abdomen were increased significantly through feeding or starvation (P<0.05). Truss dimensions of the caudal region generally decreased through feeding or starvation, particularly those dimensions at the hind part of the trunk. There were some significant decreases in classical dimensions of the head region during feeding, in relation to body depth characteristics in the trunk and caudal region during starvation, whereas there was only one decreasing classical dimension in the caudal region during feeding. The results of this study indicate that application of the truss network as a character set enforces classical coverage across the body form, discrimination among experimental groups thus being enhanced. Considering that the dimension of the lower part of the head and some truss and classical dimensions were least affected by feeding and starvation, these dimensions may then be useful as a taxonomical indicator to discriminate the species of Rhynchocypris sp. The value of trunk region dimensions with a large component of body depth in R. oxycephalus is most likely to be compromised by variability related to differences in feeding regimes of fish in different habitats.

High Glucose Induces Apoptosis through Caspase-3 Dependent Pathway in Human Retinal Endothelial Cell Line (인간망막 내피세포주에서 고농도 포도당이 caspase-3 경로를 통해 세포자연사 유도)

  • Seo, Eun-Sun;Chae, Soo-Chul;Kho, Eun-Gyeong;Lee, Jong-Bin
    • Korean Journal of Environmental Biology
    • /
    • v.27 no.1
    • /
    • pp.66-72
    • /
    • 2009
  • Diabetic Retinopathy (DR) is a leading cause of blindness among adults in the western countries. Hyperglycemia is a condition, that induces apoptotic cell death in a variety of cell types in diabetes, but the mechanism remains unclear. The aim of the study is to understand the effects of high Glucose on Human Retinal Endothelial Cells. Retinal endothelial cells were cultured in Iscove's Modified Dulbecco's Medium (IMDM) containing 5, 25 and 50 mM Glucose, incubated for 24, 36 and 48 hours in humidified 5 % CO$_2$ incubator at 37$^{\circ}C$. Human Retinal Endothelial Cell Line (HREC) were characterized for morphology with different treatment by phase contrast microscopic analysis. Number of dead and viable cells was counted by trypan blue exclusion and supported by MTT assay. The intracellular Hydrogen peroxide (H$_2$O$_2$), a Reactive Oxygen Species (ROS) generation in high glucose conditions was assessed by FOX II assay and apoptosis by caspase-3 assay. The high glucose treated cells undergoing DNA fragmentation was witnessed by Agarose gel electrophoresis. We found that the cells incubated with 25 and 50 mM glucose containing medium for 48 hours altered the morphology of the cell, induced apoptosis and DNA fragmentation. The dead cell number were high in 25 and 50 mM when compared to the cells incubated with 5 mM glucose for 24, 36, and 48 hours. Also, the H$_2$O$_2$ levels and the activity of caspase-3 were increased in high glucose treated cells. Conclusions/interpretation: Our results demonstrated that elevated glucose induces apoptosis in cultured HREC. The hyperglycemia-induced increase in apoptosis may be dependent on caspase activation. The association between ROS generation and caspase-3 activation on high glucose treated cells is yet to be investigated.

Phylogeographic and population genetic study of a Korean endemic freshwater fish species, Zacco koreanus (한국 고유 담수어종 참갈겨니(Zacco koreanus) 개체군의 계통지리학 및 집단유전학 연구)

  • Kim, Yu Rim;Jang, Ji Eun;Choi, Hee-kyu;Lee, Hyuk Je
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.4
    • /
    • pp.650-657
    • /
    • 2020
  • We conducted a phylogeographic analysis of Korean endemic Zacco koreanus populations inhabiting the East-flowing river (Gangneung Yeongokcheon; GY, Yangyang Namdaecheon; YN), the Han River (Seomgang; SG, Soksacheon; SS), and the Nakdong River(Gilancheon; GA) using the mitochondrial DNA cytochrome oxidase I (COI) gene (619 bp). Population genetic analysis was further performed to assess the population connectivity for the GY river where there is a large number of human-made artificial weirs with several fishways. The phylogeographic analysis revealed that while the populations of the East-flowing river and those of the Han River formed a monophyletic lineage, the Nakdong River individuals represented a distinct lineage with 3.7-4.2% (mean=4.0%) genetic distance from the other lineages. The population genetic analysis of the GY showed that a mid-stream population harbored relatively higher mitochondrial diversity relative to up- and down-stream populations, and there was no genetic differentiation between these three populations. The latter findings might suggest high genetic connectivity between the populations via genetic flow along the fishways. However, an analysis using faster-evolving genetic markers, such as microsatellites, is needed to confirm the findings of high population connectivity. Our study suggests the possibility of the presence of cryptic species in Z. koreanus in the Nakdong River basin. However, further study with more individual samples as well as additional markers or even more advanced genomic tools is required to test our hypothesis. Ecological or phenotypic analyses should be conducted to test whether the observed Nakdong River lineage represents a different or cryptic species, or simply hidden, but excessive, intraspecific diversity.

Analysis of a Sulfur-oxidizing Perchlorate-degrading Microbial Community (황 산화를 통해 퍼클로레이트를 분해하는 미생물 군집 분석)

  • Kim, Young-Hwa;Han, Kyoung-Rim;Hwang, Heejae;Kwon, Hyukjun;Kim, Yerim;Kim, Kwonwoo;Kim, Heejoo;Son, Myunghwa;Choi, Young-Ik;Sung, Nak-Chang;Ahn, Yeonghee
    • Journal of Life Science
    • /
    • v.26 no.1
    • /
    • pp.68-74
    • /
    • 2016
  • Perchlorate (ClO4) is an emerging pollutant detected in surface water, soil, and groundwater. Previous studies provided experimental evidence of autotrophic ClO4 removal with elemental sulfur (S0) particles and activated sludge, which are inexpensive and easily available, respectively. In addition, ClO4 removal efficiency was shown to increase when an enrichment culture was used as an inoculum instead of activated sludge. PCR-DGGE was employed in the present study to investigate the microbial community in the enrichment culture that removed ClO4 autotrophically. Microorganisms in the enrichment culture showed 99.71% or more ClO4 removal efficiency after a 7-day incubation when the initial concentration was approximately 120 mg ClO4/l. Genomic DNA was isolated from the enriched culture and its inoculum (activated sludge), and used for PCR-DGGE analysis of 16S rRNA genes. Microbial compositions of the enrichment culture and the activated sludge were different, as determined by their different DGGE profiles. The difference in DGGE banding patterns suggests that environmental conditions of the enrichment culture caused a change in the microbial community composition of the inoculated activated sludge. Dominant DGGE bands in the enrichment culture sample were affiliated with the classes β-Proteobacteria, Bacteroidetes, and Spirochaetes. Further investigation is warranted to reveal the metabolic roles of the dominant populations in the ClO4 degradation process, along with their isolation.

Isolation and Identification of a Photosensitizer from Pueraria thunbergiana Leaves that Induces Apoptosis in SK-HEP-1 Cells (P. thunbergiana 잎으로부터 SK-HEP-1세포에 대한 apoptosis를 유도하는 광과민성물질의 분리 및 구조동정)

  • Lee, Jun Young;Kim, Mi Kyeong;Ha, Jun Young;Kim, Yong Gyun;Hong, Chang Oh;Kim, So Young;Kim, Chung-Hwan;Kim, Keun Ki
    • Journal of Life Science
    • /
    • v.24 no.3
    • /
    • pp.242-251
    • /
    • 2014
  • The objective of this study was to isolate a photosensitizer from Pueraria thunbergiana leaves that induces apoptosis in SK-HEP-1 cells. Column chromatography and thin layer chromatography were used to isolate active compounds from extracts of P. thunbergiana leaves. The structures of the isolated compounds were determined by 1D-NMR, 2D-NMR, and FAB-mass spectroscopy. A substance, named M4-3, was purified from the leaves of P. thunbergiana using various chromatography methods, and the absorbance of the substance was measured. The absorbance was highest at 410 nm, suggesting that the M4-3 substance was a different compound from chlorophyll a and b, which absorb at 410, 502, 533, and 607 nm. Further analyses revealed that the M4-3 compound was a $13^2$-hydoxy pheophorbide, a methyl ester with a molecular weight of 662. M4-3 was identified as a derivative compound of pheophorbide, with a structure that magnesium comes away from the porphyrin ring. The results of the analysis of the cytotoxicity of the M4-3 substance against the SK-HEP-1 cells revealed that it inhibited rates of cell growth by 40% and 80% at a concentration of 0.04 ${\mu}M$ and 0.08 ${\mu}M$, respectively. The M4-3 compound was found to be a photosensitizer for cytotoxicity because it was appeared only in light condition as examining activity in different irradiation conditions (light condition and nonlight condition) under the same concentration. Analysis of morphological changes in the cells following cell death induced by exposure to the M4-3 substance reveled representative phenomena of apoptosis (nuclear condensation, vesicle formation, and fragmentation of DNA). The induction of apoptosis was attributed to the compound's photodynamic activity.