• Title/Summary/Keyword: environment sensor

Search Result 3,367, Processing Time 0.029 seconds

Fuzzy based Energy-Efficient Adaptive Routing Algorithm for Wireless Sensor Networks (무선 센서 네트워크에서 에너지 효율적인 퍼지 기반 적응형 라우팅 알고리즘 및 시뮬레이션)

  • Hong, Soon-Oh;Cho, Tae-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.14 no.4
    • /
    • pp.95-106
    • /
    • 2005
  • Recent advances in wireless sensor networks have led to many routing protocols designed for energy-efficiency in wireless sensor networks. Despite that many routing protocols have been proposed in wireless sensor networks, a single routing protocol cannot be energy-efficient if the environment of the sensor network varies. This paper presents a fuzzy logic based Adaptive Routing (FAR) algorithm that provides energy-efficiency by dynamically changing protocols installed at the sensor nodes. The algorithm changes protocols based on the output of the fuzzy logic which is the fitness level of the protocols for the environment. A simulation is performed to show the usefulness of the proposed algorithm.

  • PDF

3-Dimensional Sensor Array Shape Calibration in Near Field Environment (근거리 환경에서의 3차원 배열센서 형상 보정 기법)

  • Ryu, Chang-Soo;Eoh, Soo-Hae;Kang, Hyun-Koo;Rhyoo, Sang-Wook
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.4
    • /
    • pp.361-366
    • /
    • 2003
  • Most sensor array signal processing methods for multiple source localization require knowledge of the correct shape of array(the correct positions of sensors that consist array), because sensor position uncertainty can severely degrade the performance of array signal processing. In particular, it is assumed that the correct positions of the sensors are known, but the known positions may not represent the true sensor positions. Various algorithms have been proposed for 2-D sensor array shape calibration in far field environment. However, they are not available in near field. In this paper, 3-D sensor array shape calibration algorithm is proposed, which is available in near field.

  • PDF

An efficient matching mechanism for real-time sensor data dissemination (실시간 센서 데이터 배포를 위한 효율적 매칭)

  • Seok, Bo-Hyun;Lee, Pill-Woo;Huh, Eui-Nam
    • Journal of Internet Computing and Services
    • /
    • v.9 no.1
    • /
    • pp.79-90
    • /
    • 2008
  • In the ubiquitous environment sensor network technologies have advanced for collecting information of the environment. With the rapid growth of sensor network technology, it is necessary and important to share the collected sensor data with a large base of diverse users. In order to provide dissemination of sensor data, we design an information dissemination system using an independent disseminator between provider and consumer. This paper describes how we designed the information dissemination system using one of the possible dissemination patterns for sensor networks, and an efficient matching algorithm called CGIM (Classed Grouping Index Matching) which employs a dynamic re-grouping scheme.

  • PDF

Development of an environment field monitoring system to measure crop growth

  • Kim, Yeon-Soo;Kim, Du-Han;Chung, Sun-Ok;Choi, Chang-Hyun;Choi, Tae-Hyun;Kim, Yong-Joo
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.1
    • /
    • pp.57-65
    • /
    • 2019
  • The purpose of this study was to develop an environment field monitoring system to measure crop growth. The environment field monitoring system consisted of sensors, a data acquisition system, and GPS. The sensors used in the environment field monitoring system consisted of an ambient sensor, a soil sensor, and an intensity sensor. The temperature and humidity of the atmosphere were measured with the ambient sensor. The temperature, humidity, and EC of the soil were measured with the soil sensor. The data acquisition system was developed using the Arduino controller. The field monitoring data were collected before a rainy day, on a rainy day, and after the rainy day. The measured data using the environment field monitoring system were compared with the Daejeon regional meteorological office data. The correlation between the data from the environment field monitoring system and the data from the Daejeon regional meteorological office was analyzed for performance evaluation. The correlation of the temperature and humidity of the atmosphere was analyzed because the Daejeon regional meteorological office only provided data for the temperature and humidity of the atmosphere. The correlation coefficients were 0.86 and 0.90, respectively. The result showed a good correlation between the data from the environment field monitoring system and the data from the Daejeon regional meteorological office. Therefore, the developed system could be applied to monitoring the field environment of agricultural crops.

Clustering Algorithm for Efficient Energy Management in Sensor Network (센서 네트워크에서의 효율적 에너지 관리를 위한 클러스터링 알고리즘)

  • Seo, Sung-Yun;Jung, Won-Soo;Oh, Young-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.10B
    • /
    • pp.845-854
    • /
    • 2008
  • In this paper, we propose a clustering algorithm for efficient energy management of sensor network consisted of sensor nodes that have restricted energy to solve these problem. Proposed algorithm improves energy efficiency by controlling sensing power. And it has distinctive feature that is applied in various network environment. The performance evaluation result shows that the energy efficiency is improved by 5% in the case of all sensor node fixed and by $10{\sim}15%$ in the case of all sensor node moving. It is confirmed through experiment process that the proposed algorithm brings energy efficiency ratio improvement of $5{\sim}15%$ more than the existing algorithm. Proposed algorithm derived an upper bound on the energy efficiency for Ubiquitous Computing environment that have various network environment that is with ZigBee technology of IEEE 802.15.4 bases. Also, we can blow bring elevation for lifetime of sensor network greatly for lifetime of sensor node as is small. And we think that may expand practical use extent of a sensor network technology more in fast changed network environment.

Performance Evaluation of App Profile-based Sensor Registry System considering User Mobility and Sensor Density (사용자 이동성과 센서 밀집도를 고려한 앱 프로파일 기반 센서 레지스트리 시스템의 성능 평가)

  • Kim, Jong Hyun;Lee, Sukhoon;Jeong, Dongwon
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.4
    • /
    • pp.87-97
    • /
    • 2019
  • SRS was proposed for immediate processing of the meaning of sensor data on mobile devices independent from specific sensor networks and sensor type. However, each time new sensor data is received, sensor data inspection operations are performed repeatedly, and it cause resulting in low performance. App profile-based SRS has been proposed to resolve the problem. The app profile-based SRS has improved the SRS problem through the profile, but has been tested in a virtual simulation environment. After that the test was experimented in a real-time environment, but has not been tested with a variety of dynamic factors. Therefore, this paper experiment considering such as user mobility and sensor density in real-time environment. And this paper also evaluate performance of the App profile-based through analysis of the results of the experiment. As a result, app profile-based SRS is high influence by density and sensor type, and the number of sensor node is not influence.

Environmental Monitoring Using Comfort Sensing System

  • Na, Dae-Suk;Kang, Jeong-Ho;Park, Se-Kwang
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.24-33
    • /
    • 2003
  • This research is about a comfort sensing system for human environmental monitoring using a one-bodied humidity and temperature sensor and an air flow sensor. The thermal comfort that a human being feels in indoor environment has been known to be influenced mostly by six parameters, i.e. air temperature, radiation, air flow, humidity, activity level and clothing thermal resistance. Considering an environmental monitoring, we have designed and fabricated a one-bodied humidity and temperature sensor and an air flow sensor that detect air relative humidity, temperature and air flow in human environment using surface micromachining technologies. Micro-controller calculates a PMV (predicted mean vote) and CSV (comfort sensing vote) with sensing signals and display a PMV on LCD (liquid crystal display) for human comfort on indoor climate. Our work has demonstrated that a comfort sensing system can provide an effective means of measuring and monitoring the indoor comfort sensing index of a human being. Experimental results with simulated environment clearly suggest that our comfort sensing system can be used in many applications such as air conditioning system, feedback controlling in automobile, home and hospital etc..

Extended Kalman Filter-based Localization with Kinematic Relationship of Underwater Structure Inspection Robots (수중 구조물 검사로봇의 기구학적 관계를 이용한 확장 칼만 필터 기반의 위치추정)

  • Heo, Young-Jin;Lee, Gi-Hyeon;Kim, Jinhyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.4
    • /
    • pp.372-378
    • /
    • 2013
  • In this paper, we research the localization problem of the crawler-type inspection robot for underwater structure which travels an outer wall of underwater structure. Since various factors of the underwater environment affect an encoder odometer, it is hard to localize robot itself using only on-board sensors. So in this research we used a depth sensor and an IMU to compensate odometer which has extreme error in the underwater environment through using Extended Kalman Filter(EKF) which is normally used in mobile robotics. To acquire valid measurements, we implemented precision sensor modeling after assuming specific situation that robot travels underwater structure. The depth sensor acquires a vertical position of robot and compensates one of the robot pose, and IMU is used to compensate a bearing. But horizontal position of robot can't be compensated by using only on-board sensors. So we proposed a localization algorithm which makes horizontal direction error bounded by using kinematics relationship. Also we implemented computer simulations and experiments in underwater environment to verify the algorithm performance.

A Study on Geothermal Evaluation of Alluvium and Riverbed using Thermal Line Temperature Monitoring (다중 온도 모니터링을 통한 충적층 및 하상의 지열특성 평가 연구)

  • Jung, Woo-Sung;Kim, Hyoung-Soo;Park, Dong-Soon;Ahn, Young-Sub
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.171-178
    • /
    • 2006
  • In advanced countries, state-of-the-art temperature monitoring technique is widely used for effective use of geothermal resources. But these kind of modern tools such as Thermal Line Sensor has not been applied to find geothermal characteristics of alluvium and riverbed in domestic area. In this research, state-of-the-art thermal line temperature sensor monitoring was introduced. And long term field test using this type of sensor was performed to find geothermal characteristics of alluvium and riverbed and evaluate the availability for heat energy source. As a result, temperature monitoring technique through thermal line sensor was very effective to obtain basic geothermal information of alluvium deposit and riverbed. Also, it was found that the groundwater temperature phase showed its potential of utilization as a energy source of heat pump. It is estimated that further study shows a specific corelation between temperature monitoring data and its availability as a energy source.

  • PDF

Visual Sensor Design and Environment Modeling for Autonomous Mobile Welding Robots (자율 주행 용접 로봇을 위한 시각 센서 개발과 환경 모델링)

  • Kim, Min-Yeong;Jo, Hyeong-Seok;Kim, Jae-Hun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.9
    • /
    • pp.776-787
    • /
    • 2002
  • Automation of welding process in shipyards is ultimately necessary, since the welding site is spatially enclosed by floors and girders, and therefore welding operators are exposed to hostile working conditions. To solve this problem, a welding mobile robot that can navigate autonomously within the enclosure has been developed. To achieve the welding task in the closed space, the robotic welding system needs a sensor system for the working environment recognition and the weld seam tracking, and a specially designed environment recognition strategy. In this paper, a three-dimensional laser vision system is developed based on the optical triangulation technology in order to provide robots with 3D work environmental map. Using this sensor system, a spatial filter based on neural network technology is designed for extracting the center of laser stripe, and evaluated in various situations. An environment modeling algorithm structure is proposed and tested, which is composed of the laser scanning module for 3D voxel modeling and the plane reconstruction module for mobile robot localization. Finally, an environmental recognition strategy for welding mobile robot is developed in order to recognize the work environments efficiently. The design of the sensor system, the algorithm for sensing the partially structured environment with plane segments, and the recognition strategy and tactics for sensing the work environment are described and discussed with a series of experiments in detail.