• Title/Summary/Keyword: envelope curve

Search Result 77, Processing Time 0.03 seconds

CANAL HYPERSURFACES GENERATED BY NON-NULL CURVES IN LORENTZ-MINKOWSKI 4-SPACE

  • Mustafa Altin;Ahmet Kazan;Dae Won Yoon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.5
    • /
    • pp.1299-1320
    • /
    • 2023
  • In the present paper, firstly we obtain the general expression of the canal hypersurfaces that are formed as the envelope of a family of pseudo hyperspheres, pseudo hyperbolic hyperspheres and null hyper-cones whose centers lie on a non-null curve with non-null Frenet vector fields in E41 and give their some geometric invariants such as unit normal vector fields, Gaussian curvatures, mean curvatures and principal curvatures. Also, we give some results about their flatness and minimality conditions and Weingarten canal hypersurfaces. Also, we obtain these characterizations for tubular hypersurfaces in E41 by taking constant radius function and finally, we construct some examples and visualize them with the aid of Mathematica.

Performance Evaluation of Steel Frame and Steel Damper Reinforced in RC frame (RC 골조에 보강된 강재프레임과 강재댐퍼의 성능 평가)

  • Lee, Hyun-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.1
    • /
    • pp.77-84
    • /
    • 2023
  • In this study, the performance evaluation of the RC frame specimen (RV2) which was strengthened by a steel frame and a steel damper with the lateral deformation prevention details proceeded. The comparison objects are bare frame specimen (BF), RV2 and AWD, where AWD is a specimen reinforced with steel damper and aramid fiber sheets. In the evaluation of envelope curve, stiffness degradation, and energy dissipation capacity, RV2 was evaluated to have excellent capacity as a whole. To evaluate the strengthening effect of the steel frame based on the maximum strength and energy dissipation capacity, it was evaluated to have a 38% of the RV2's capacity.

TIME VARIATIONS OF THE RADIAL VELOCITY OF H2O MASERS IN THE SEMI-REGULAR VARIABLE R CRT

  • Sudou, Hiroshi;Shiga, Motoki;Omodaka, Toshihiro;Nakai, Chihiro;Ueda, Kazuki;Takaba, Hiroshi
    • Journal of The Korean Astronomical Society
    • /
    • v.50 no.6
    • /
    • pp.157-165
    • /
    • 2017
  • $H_2O$ maser emission at 22 GHz in the circumstellar envelope is one of the good tracers of detailed physics and kinematics in the mass loss process of asymptotic giant branch stars. Long-term monitoring of an $H_2O$ maser spectrum with high time resolution enables us to clarify acceleration processes of the expanding shell in the stellar atmosphere. We monitored the $H_2O$ maser emission of the semi-regular variable R Crt with the Kagoshima 6-m telescope, and obtained a large data set of over 180 maser spectra over a period of 1.3 years with an observational span of a few days. Using an automatic peak detection method based on least-squares fitting, we exhaustively detected peaks as significant velocity components with the radial velocity on a $0.1kms^{-1}$ scale. This analysis result shows that the radial velocity of red-shifted and blue-shifted components exhibits a change between acceleration and deceleration on the time scale of a few hundred days. These velocity variations are likely to correlate with intensity variations, in particular during flaring state of $H_2O$ masers. It seems reasonable to consider that the velocity variation of the maser source is caused by shock propagation in the envelope due to stellar pulsation. However, it is difficult to explain the relationship between the velocity variation and the intensity variation only from shock propagation effects. We found that a time delay of the integrated maser intensity with respect to the optical light curve is about 150 days.

Comparison of Magnetocardiogram Parameters Between a Ischemic Heart Disease Group and Control Group (정상군 및 허혈성 심질환 환자군에서의 심자도 파라미터 비교)

  • Park, Jong-Duk;Huh, Young;Jin, Seung-oh;Jeon, Sung-chae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.11
    • /
    • pp.680-688
    • /
    • 2005
  • The electrical current generated by heart creates not only electric potential but also a magnetic field. We have observed electrophysiological phenomena of the heart by measuring components of magnetocardiogram(MCG) using 61 channel superconducting quantum interference device(SQUD) system. We have analyzed the possibility and characteristics of MCG parameters for diagnosis of ischemic heart disease. A technique for automatic analysis of MCG signals in time domain was developed. The methods for detecting the position, the interval, the amplitude ratio, and the direction of single current dipole were examined in the MCG wave. The position and interval parameters were obtained by calculating the gradients of a envelope curve which could be formed by the difference between the maximum and minimum envelope of multi-channel MCG signals. We show some differences of the frequency contour map between the normal MCG and the abnormal (ischemic heart disease) MCG. The direction of single current dipole can be defined by rotating the magnetic field according to Biot-Savart's law at each point of MCG signals. In this study, we have examined the direction of single current dipole from searching for the centroids of positive and negative magnetic fields. The amplitude ratio parameters for measuring 57 deviation consisted of A$_{T}$/A$_{R}$ and other ratios. and We developed a new analysis method, which is based on the frequency contour map of electromagnetic field. Using theses parameters, we founded significant differences between normal subjects and ischemic patients in some parameters.

Generalization of the Extreme Floods for Various Sizes of Ungauged Watersheds Using Generated Streamflow Data (생성된 유량자료를 활용한 미계측유역 극한 홍수 범위 일반화)

  • Yang, Zhipeng;Jung, Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.5
    • /
    • pp.627-637
    • /
    • 2022
  • To know the magnitudes of extreme floods for various sizes of watersheds, massive streamflow data is fundamentally required. However, small/medium-size watersheds missed streamflow data because of the lack of gauge stations. In this study, the Streamflow Propagation Method (SPM) was applied to generate streamflow data for small/medium size watersheds with no measurements. Based on the generated streamflow data for ungauged watersheds at three different locations (i.e., Chungju Dam (CJD), Seomjin Dam (SJD), and Andong Dam (ADD) watersheds), the scale ranges of extreme floods were evaluated for different sizes of ungauged watersheds by using the specific flood distribution analysis. As a general result, a range of specific floods decreases with increasing watershed size. The distribution of the specific flood in the same size of a watershed possibly depends on the size and topography of the watershed area. The delivered equations were compared to show the relations between the specific flood and sizes of watersheds. In the comparisons of equations, the Creager envelope curve has the higher potential to represent the maximum flood distribution for each watershed. For the generalization of the maximum flood distribution for three watersheds, optimized envelop curves are obtained with lower RMSE than that of Creager envelope curve.

The Influence of Net Normal Stresses on the Shear Strength of Unsaturated Residual Granite Soils (화강풍화잔적토의 불포화전단강도에 미치는 순연직응력의 영향)

  • 성상규;이인모
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.27-38
    • /
    • 2003
  • The characteristics and prediction model of the shear strength of unsaturated residual granite soils were studied in this paper. In order to investigate the influence of the net normal stress on the shear strength, unsaturated triaxial tests and SWCC tests were carried out by varying the net normal stress. Experimental data for unsaturated shear strength tests were compared with predicted shear strength envelopes obtained from existing prediction models. It was shown that the soil-water characteristic curve and the shear strength of the unsaturated soil varied with the change of the net normal stress. Therefore, to achieve a truly descriptive shear strength envelope for unsaturated soils, the effect of the normal stress on the contribution of matric suction to the shear strength has to be taken into consideration. In this paper, a modified prediction model f3r the unsaturated shear strength was proposed.

Simulation of the fracture of heterogeneous rock masses based on the enriched numerical manifold method

  • Yuan Wang;Xinyu Liu;Lingfeng Zhou;Qi Dong
    • Geomechanics and Engineering
    • /
    • v.34 no.6
    • /
    • pp.683-696
    • /
    • 2023
  • The destruction and fracture of rock masses are crucial components in engineering and there is an increasing demand for the study of the influence of rock mass heterogeneity on the safety of engineering projects. The numerical manifold method (NMM) has a unified solution format for continuous and discontinuous problems. In most NMM studies, material homogeneity has been assumed and despite this simplification, fracture mechanics remain complex and simulations are inefficient because of the complicated topology updating operations that are needed after crack propagation. These operations become computationally expensive especially in the cases of heterogeneous materials. In this study, a heterogeneous model algorithm based on stochastic theory was developed and introduced into the NMM. A new fracture algorithm was developed to simulate the rupture zone. The algorithm was validated for the examples of the four-point shear beam and semi-circular bend. Results show that the algorithm can efficiently simulate the rupture zone of heterogeneous rock masses. Heterogeneity has a powerful effect on the macroscopic failure characteristics and uniaxial compressive strength of rock masses. The peak strength of homogeneous material (with heterogeneity or standard deviation of 0) is 2.4 times that of heterogeneous material (with heterogeneity of 11.0). Moreover, the local distribution of parameter values can affect the configuration of rupture zones in rock masses. The local distribution also influences the peak value on the stress-strain curve and the residual strength. The post-peak stress-strain curve envelope from 60 random calculations can be used as an estimate of the strength of engineering rock masses.

Effect of Confined High-Strength Concrete Columns

  • Van, Kyung-Oh;Yun, Hyun-Do;Hwang, Sun-Kyoung
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.5
    • /
    • pp.747-758
    • /
    • 2003
  • The moment-curvature envelope describes the changes in the flexural capacity with deformation during a nonlinear analysis. Therefore, the moment-curvature analysis for reinforced concrete columns, indicating the available flexural strength and ductility, can be conducted providing the stress-strain relation for the concrete and steel are known. The moments and curvatures associated with increasing flexural deformations of the column may be computed for various column axial loads by incrementing the curvature and satisfying the requirements of strain compatibility and equilibrium of forces. Clearly it is important to have accurate information concerning the complete stress-strain curve of confined high-strength concrete in order to conduct reliable moment-curvature analysis that assesses the ductility available from high-strength concrete columns. However, it is not easy to explicitly characterize the mechanical behavior of confined high-strength concrete because of various parameter values, such as the confinement type of rectilinear ties, the compressive strength of concrete, the volumetric ratic and strength of rectangular ties. So a stress-strain model is developed which can simulate complete inelastic moment-curvature relations of high-strength concrete columns.

The Effects of Task-oriented Training on Kinetic Factors and Muscle Activities of CVA Patients (과제지향성 훈련이 뇌졸중 환자의 운동역학적 변인 및 근활성도에 미치는 영향)

  • Park, Seung-Kyu
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.2
    • /
    • pp.41-50
    • /
    • 2007
  • The purpose of this study was to examine the effects of Task-oriented training on the balance, lapse time and MVC(Maximum Voluntary Contraction) of CVA(cerebral vascular accident) patients. The active balance equipment was used to measure of the static balance, lapse time and task-oriented training. The EMG technique was used to record muscle activitie of affected side of gluteus medius and vastus medialis. The raw EMG data were filtered with band pass filter (60Hz) to remove artifacts and then low pass filtered (20Hz) to find the linear envelope which resemble muscle tension curve. The experiment had been conducted at the department of physical therapy in J hospital in M city during 8weeks. The thirty patients experienced the stroke were participated: training group (15), control group (15). They were ambulatory with or without an assistive device. They were assessed on central perturbation(mm) in the static balance, lapse time(s) and MVC test(mV). The data were analyzed using repeated measured ANOVA. The results were as follows: After Task-oriented training, central perturbation and lapse time was significantly differences in both groups(p<.001), and MVC in gluteus medius were no significant differences in both groups, but vastus medialis was significant differences in both groups (p<.001).

Vibration Response of a Human Carpal Muscle (인체 수관절 근육의 진동 응답)

  • Chun, Han-Yong;Kim, Jin-Oh;Park, Kwang-Hun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.1
    • /
    • pp.31-40
    • /
    • 2011
  • This paper examines the dynamic characteristics of a human carpal muscle through theoretical analysis and experiment. The carpal muscle was modeled as a 1-DOF vibration system and vibration response due to a ramp function force was calculated. The electromyogram signal corresponding to the muscle excitation force was measured, and the excitation force function of an envelope curve from the electromyogram signal was extracted. The ramp input function of electrical stimulation to the carpal muscle was applied by using a device for functional electrical stimulation, and the angular displacements corresponding to steady state response were measured. Theoretical calculations of the vibration response displacements were compared with the experimental results of the angular displacements, and have shown a good agreement with the result that is linearly proportional to the excitation force magnitude. As a result, the relationship between the input current of the electrical stimulation and the excitation force magnitude was inferred. The result was shown that it can be applied to develop rehabilitation training devices.