• 제목/요약/키워드: entropy characterization

검색결과 20건 처리시간 0.028초

Recent Developments in Magnetic Measurements: from Technical Method to Physical Knowledge

  • Basso, V.;Fiorillo, F.;Beatrice, C.;Caprile, A.;Kuepferling, M.;Magni, A.;Sasso, C.P.
    • Journal of Magnetics
    • /
    • 제18권3호
    • /
    • pp.331-338
    • /
    • 2013
  • We present a few significant advances in methods and concepts of magnetic measurements, aimed both at providing novel routes in the characterization of hard and soft magnetic materials and at improving our basic knowledge of the magnetization process. We discuss, in particular, investigation methods and experimental arrangements that have been developed in recent times for: 1) Hysteresis loop determination in extra-hard magnets by means of Pulsed Field Magnetometry; 2) Broadband observation of domain wall dynamics by highspeed stroboscopical Kerr techniques; 3) Entropy measurements in magnetocaloric materials by calorimetry in magnetic field. While pertaining to somewhat independent fields of investigation, all these measuring techniques have in common a solid approach to the underlying physical phenomenology and have a potential for further developments.

Synthesis, Characterization and DNA Interaction Studies of (N,N'-Bis(5-phenylazosalicylaldehyde)-ethylenediamine) Cobalt(II) Complex

  • Sohrabi, Nasrin;Rasouli, Nahid;Kamkar, Mehdi
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권8호
    • /
    • pp.2523-2528
    • /
    • 2014
  • In the present study, at first, azo Schiff base ligand of (N,N'-bis(5-phenylazosalicylaldehyde)-ethylenediamine) ($H_2L$) has been synthesized by condensation reaction of 5-phenylazosalicylaldehyde and ethylenediamine in 2:1 molar ratio, respectively. Then, its cobalt complex (CoL) was synthesized by reaction of $Co(OAc)_2{\cdot}4H_2O$ with ligand ($H_2L$) in 1:1 molar ratio in ethanol solvent. This ligand and its cobalt complex containing azo functional groups were characterized using elemental analysis, $^1H$-NMR, UV-vis and IR spectroscopies. Subsequently, the interaction between native calf thymus deoxyribonucleic acid (ct-DNA) and CoL complex was investigated in 10 mM Tris/HCl buffer solution, pH = 7 using UV-vis absorption, thermal denaturation technique and viscosity measurements. From spectrophotometric titration experiments, the binding constant of CoL complex with ct-DNA was found to be $(2.4{\pm}0.2){\times}10^4M^{-1}$. The thermodynamic parameters were calculated by van't Hoff equation.The enthalpy and entropy changes were $5753.94{\pm}172.66kcal/mol$ and $43.93{\pm}1.18cal/mol{\cdot}K$ at $25^{\circ}C$, respectively. Thermal denaturation experiments represent the increasing of melting temperature of ct-DNA (about $0.93^{\circ}C$) due to binding of CoL complex. The results indicate that the process is entropy-driven and suggest that hydrophobic interactions are the main driving force for the complex formation.

Biochemical characterization of ferredoxin-NADP+ reductase interaction with flavodoxin in Pseudomonas putida

  • Yeom, Jin-Ki;Park, Woo-Jun
    • BMB Reports
    • /
    • 제45권8호
    • /
    • pp.476-481
    • /
    • 2012
  • Flavodoxin (Fld) has been demonstrated to bind to ferredoxin-NADP$^+$ reductase A (FprA) in Pseudomonas putida. Two residues ($Phe^{256}$, $Lys^{259}$) of FprA are likely to be important for interacting with Fld based on homology modeling. Site-directed mutagenesis and pH-dependent enzyme kinetics were performed to further examine the role of these residues. The catalytic efficiencies of FprA-$Ala^{259}$ and FprA-$Asp^{259}$ proteins were two-fold lower than those of the wild-type FprA. Homology modeling also strongly suggested that these two residues are important for electron transfer. Thermodynamic properties such as entropy, enthalpy, and heat capacity changes of FprA-$Ala^{259}$ and FprA-$Asp^{259}$ were examined by isothermal titration calorimetry. We demonstrated, for the first time, that $Phe^{256}$ and $Lys^{259}$ are critical residues for the interaction between FprA and Fld. Van der Waals interactions and hydrogen bonding were also more important than ionic interactions for forming the FprA-Fld complex.

인버스 가스 크로마토 그래피를 이용한 소수화된 MCC의 표면 특성 분석 (Surface Characterization of Hydrophobically Modified MCC Using Inverse Gas Chromatography)

  • 이학래;이용민;박일;이진희;조중연;한신호
    • 펄프종이기술
    • /
    • 제34권3호
    • /
    • pp.9-16
    • /
    • 2002
  • The adsorption characteristics and surface energetics of hydrophobically modified MCC have been investigated by the inverse gas chromatography technique at infinite dilution. The thermodynamic parameters of adsorption, ΔG, ΔH and ΔS, for n-alkanes were determined at infinite dilution. Heats of adsoption of the n-alkanes increased as the level of hydrophobic modification increased. The hydrophobically modified MCC also showed greater entropy of adsorption indicating restricted mobility of the adsorbed n-alkanes. The acid/base characteristics of the MCC were evaluated using polar probes. As the hydrophobicity of MCC increased, the basisity of the MCC decreased.

Characterization of New Two Parametric Generalized Useful Information Measure

  • Bhat, Ashiq Hussain;Baig, M. A. K.
    • Journal of Information Science Theory and Practice
    • /
    • 제4권4호
    • /
    • pp.64-74
    • /
    • 2016
  • In this paper we define a two parametric new generalized useful average code-word length $L_{\alpha}^{\beta}$(P;U) and its relationship with two parametric new generalized useful information measure $H_{\alpha}^{\beta}$(P;U) has been discussed. The lower and upper bound of $L_{\alpha}^{\beta}$(P;U), in terms of $H_{\alpha}^{\beta}$(P;U) are derived for a discrete noiseless channel. The measures defined in this communication are not only new but some well known measures are the particular cases of our proposed measures that already exist in the literature of useful information theory. The noiseless coding theorems for discrete channel proved in this paper are verified by considering Huffman and Shannon-Fano coding schemes on taking empirical data. Also we study the monotonic behavior of $H_{\alpha}^{\beta}$(P;U) with respect to parameters ${\alpha}$ and ${\beta}$. The important properties of $H_{{\alpha}}^{{\beta}}$(P;U) have also been studied.

Subsequent application of self-organizing map and hidden Markov models infer community states of stream benthic macroinvertebrates

  • Kim, Dong-Hwan;Nguyen, Tuyen Van;Heo, Muyoung;Chon, Tae-Soo
    • Journal of Ecology and Environment
    • /
    • 제38권1호
    • /
    • pp.95-107
    • /
    • 2015
  • Because an ecological community consists of diverse species that vary nonlinearly with environmental variability, its dynamics are complex and difficult to analyze. To investigate temporal variations of benthic macroinvertebrate community, we used the community data that were collected at the sampling site in Baenae Stream near Busan, Korea, which is a clean stream with minimum pollution, from July 2006 to July 2013. First, we used a self-organizing map (SOM) to heuristically derive the states that characterizes the biotic condition of the benthic macroinvertebrate communities in forms of time series data. Next, we applied the hidden Markov model (HMM) to fine-tune the states objectively and to obtain the transition probabilities between the states and the emission probabilities that show the connection of the states with observable events such as the number of species, the diversity measured by Shannon entropy, and the biological water quality index (BMWP). While the number of species apparently addressed the state of the community, the diversity reflected the state changes after the HMM training along with seasonal variations in cyclic manners. The BMWP showed clear characterization of events that correspond to the different states based on the emission probabilities. The environmental factors such as temperature and precipitation also indicated the seasonal and cyclic changes according to the HMM. Though the usage of the HMM alone can guarantee the convergence of the training or the precision of the derived states based on field data in this study, the derivation of the states by the SOM that followed the fine-tuning by the HMM well elucidated the states of the community and could serve as an alternative reference system to reveal the ecological structures in stream communities.

MBR 공정에서 수온에 따른 막오염 및 CEB 세정효율 특성 (Characterization of membrane fouling and CEB (Chemical enhanced backwashing) efficiency with temperature in SMBR Process)

  • 박기태;박정훈;최은혜;김형수;김지훈
    • 상하수도학회지
    • /
    • 제31권5호
    • /
    • pp.389-395
    • /
    • 2017
  • In this paper, we investigate the characteristics of membrane fouling caused by water temperature in the Membrane bioreactor(MBR) process and try to derive the membrane fouling control by chemical enhanced backwashing(CEB). The extracellular polymeric substances(EPS) concentration was analyzed according to the water temperature in the MBR, and the membrane fouling characteristics were investigated according to the conditions, with sludge & without sludge, through a lab-scale reactor. As shown in the existing literature the fouling resistance rate was increased within sludge with the water temperature was lowered. However, in the lab-scale test using the synthetic wastewater, the fouling resistance increased with the water temperature. This is because that the protein of the EPS was more easily adsorbed on the membrane surface due to the increase of entropy due to the structural rearrangement of the protein inside the protein as the water temperature increases. In order to control membrane fouling, we tried to derive the cleaning characteristics of CEB by using sodium hypochlorite(NaOCl). We selected the condition with the chemicals and the retention time, and the higher the water temperature and the chemical concentration are the higher the efficiencies. It is considered that the increasing temperature accelerated the chemical reaction such as protein peptide binding and hydrolysis, so that the attached proteinaceous structure was dissolved and the frequency of the reaction collision with the protein with the chemical agent becomes higher. These results suggest that the MBRs operation focus on the fouling control of cake layer on membrane surface in low temperatures. On the other hand, the higher the water temperature is the more the operation strategies of fouling control by soluble EPS adsorption are needed.

Aspergillus niger가 생산(生産)하는 Endo-Polygalacturonase의 분리(分離)와 특성(特性) (Separation and Characterization of Endo-Polygalacturonase from Aspergillus niger)

  • 박경빈;박관화
    • 한국식품과학회지
    • /
    • 제16권1호
    • /
    • pp.41-46
    • /
    • 1984
  • Aspergillus niger sherumanni IAM 2059가 분비하는 펙틴질분해효소 중에서 endo-polygalacturonase 를 Sephadex G-100, DEAE-Sephadex A-50을 이용하여 분리하고 점도감소와 분해산물분석을 통해 효소의 특성을 조사하였다. Chromatography를 통해 얻은 3 개의 역가 fraction (F-A, F-I 및 F-II) 은 각각 exo형 효소, eodo-polygalacturonase, endo-polymethylgalacturonase 이었다. endo-polygalacturonase의 역가 최적 pH는 환원당 생성으로는 pH4.2 근방이었고 점도감도로는 pH4.7 근방이었다. 이 효소의 Z-value는 $7.5^{\circ}C$이고 $D40^{\circ}C$는 240sec 이며 $40^{\circ}C$에서 활성화엔트로피(Enthalphy of activation) 217.3KJ/mol, 활성화엔트로피(Entropy of activation) 409.2J/mol.K, 활성화자유에너지(Free energy activation) 89.2KJ/mol 이었다.

  • PDF

The Biochemical Characterization of D-Hydroxyisovalerate Dehydrogenase, a Key Enzyme in the Biosynthesis of Enniatins

  • Lee, Chan; Zocher, Rainer
    • BMB Reports
    • /
    • 제29권6호
    • /
    • pp.493-499
    • /
    • 1996
  • The biochemical properties of purified D-hydruxyisovalerate dehydrogenase from Fusarium sambucinum was elucidated. D-Hydroxyisovalerate dehydrogenase produced solely D-hydroxyisovalerate from 2-ketoisovalerate. The isoelectric point of the purified enzyme was 7.0. The enzyme was highly specific with 2-ketoisovalerate ($K_{m}=0.188$ mM, $V_{max}=8.814$ mmol/min mg) and 2-keto-3-methyl-n-valerate ($K_{m}=0.4$ mM, $V_{max}=1.851$ mmol/min mg) for the reductive reaction. This was also seen by comparing D-hydroxyisovalerate ($K_{m}=1.667$ mM, $V_{max}=0.407$ mmol/min mg) and D-hydroxy-3-methyl-n-valerate ($K_{m}=6.7$ mM, $V_{max}=0.648$ mmol/min mg) for the oxidative reaction. Thiol blocking reagents, such as iodoacetamide, N-ethylmaleimide and p-chloromecuribenzoate inhibited about 80% of enzyme activity at 0.02 mM, 50 mM and 50 mM, respectively. The enzyme activity was also inhibited by the addition of 0.1 mM of various metal ions, such as $Fe^{2+}$ (67%), $Cu^{2+}$ (88%), $Zn^{2+}$ t (76%) and $Mg^{2+}$ (9%). The enzyme was stable over three months in 50 mM potassium phosphate buffer (pH 5~7) at $-80^{\circ}C$. However the purified enzyme lost 30% of its activity in the same buffer after 24 h at $4^{\circ}C$. The studies about thermal inactivation of D-hydroxyisovalerate dehydrogenase exhibit 209.2 kJ/M of activation enthalpy and 0.35 kJ/mol K of activation entropy.

  • PDF

Characterization of Water-Filled Ag/AgCl Reference Electrode

  • Bahn Chi Bum;Oh Sihyoung;Hwang Il Soon;Chung Hahn Sup;Jegarl Sung
    • 전기화학회지
    • /
    • 제4권3호
    • /
    • pp.87-93
    • /
    • 2001
  • 외부 Ag/AgCl 기준 전극은 가압형 및 비등형 경수로 환경에 널리 사용되었다. 전극의 채움 용액 (Siting solution)으로 통상 KCl을 사용하는데, 다공성 지르코니아로 만들어지는 플러그를 통한 Cl 이온의 누설이 전극의 전위차 변동을 유발하는 문제가 있다. 누설로 인한 전위차 변동의 문제를 해결하기 위해 채움 용액으로 순수를 사용하였다 순수를 사용하는 경우 상온에서의 AgCl용해도에 의해 Cl이온의 농도가 결정된다. 붕산과 수산화리튬 혼합용액으로 $288^{\circ}C$에서 전극의 안정성 실험을 실시하였다. 약 일주일간 전위차 변화는 10mV 이내였으며, $288^{\circ}C$$240^{\circ}C$에서의 온도 사이클링 시험 전후의 전위차 변화는 15mV 이내였다. 이온의 limiting equivalent conductances와 Agar의 수역학적 이론을 토대로 하여 전극의 TLJP을 계산하였다. 전극 채움 용액 내의 Cl이온 농도를 상온에서 측정한 값으로 보정하여 이론값을 계산할 경우, 실험값과 비교적 잘 일치하는 것을 알 수 있었다.