• Title/Summary/Keyword: entrained flow

Search Result 123, Processing Time 0.018 seconds

Prediction of Slag Behavior in an Entrained Flow Coal Gasifier for IGCC (IGCC용 분류층 석탄가스화기 내부에서의 슬래그 거동 예측)

  • Chung, Jaehwa;Chi, Junhwa;Lee, Joongwon;Kim, Simoon;Seo, Seokbin;Park, Hoyoung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.75.2-75.2
    • /
    • 2011
  • 고온고압에서 운전되는 IGCC용 분류층 석탄가스화기는 석탄에 포함된 회 성분을 대부분 용융 슬래그 형태로 가스화기 벽을 타고 흘러내리게 하여 가스화기 하부로 배출시킨다. 이러한 용융 슬래그를 원활하게 배출시키는 것은 가스화기의 안정적인 운전에 있어서 매우 중요하다. 본 연구에서는 슬래그 층 내의 물질수지, 운동량 및 에너지 보존을 고려하여 석탄가스화기내의 슬래그 거동을 해석할 수 있는 모델 식을 유도하였다. 유도된 슬래그 거동 모델 식들을 적용하고 가스화기의 형상을 고려하여 가스화기 내부에서의 슬래그 거동을 해석하였다. 또한 슬래그 물성치들인 슬래그 점도, 슬래그 비열, 슬래그 밀도, 슬래그 열전달 계수 등을 슬래그의 조성 변화에 따라 별도로 산정하여 슬래그 해석의 입력 데이터로 사용하였다. 슬래그에 첨가되는 석회석의 비율을 해석의 주요 변수로 사용하여 가스화기 하부에서 용융 슬래그 및 고체 슬래그 두께, 용융 슬래그 층 내부에서의 슬래그 점도분포 및 슬래그 속도분포 등 슬래그 거동의 주요 특성들을 예측하였다. 해석결과로 석탄에 석회석의 첨가량을 증가시키면 슬래그의 임계점도온도(temperature of critical viscosity)와 점도가 낮아지므로 가스화기 벽면에서의 용융 슬래그의 유동속도는 빨라지며, 고체 슬래그와 용융 슬래그의 두께가 감소하는 것을 정량적으로 확인할 수 있었다.

  • PDF

Analysis of Slag Behavior near the Slag Tap in an Entrained Flow Coal Gasifier (분류층 석탄가스화기 하부 슬래그 탭 부근의 슬래그 거동 해석)

  • Chung, Jae-Hwa;Chi, Jun-Hwa;Lee, Joong-Won;Seo, Seok-Bin;Kim, Ki-Tae;Park, Ho-Young
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.6
    • /
    • pp.913-924
    • /
    • 2011
  • A steady-state analysis has been conducted to predict the behavior of the slag layer in the entrained-flow slagging coal gasifier. The analysis takes into consideration the composition dependent slag properties such as density, viscosity, heat capacity, thermal conductivity, and temperature of critical viscosity. The amount of added flux to the design coal and the variation of syngas temperature inside the gasifier have been adopted as calculation parameters. The predicted results are the local thickness of the molten and the solid slag layers, and the slag viscosity and the velocity distribution across the molten slag layer along the gasifier wall near the slag tap.

Gasification characteristics in an entrained flow coal gasifier (분류층 건식 석탄가스화기에서의 가스화 특성)

  • Yu, Yeong-Don;Yun,Yong-Seung;An, Dal-Hong;Park, Ho-Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.12
    • /
    • pp.1690-1700
    • /
    • 1997
  • Entrained coal gasification tests with Datong coal were performed to assess the influence of oxygen/coal ration and pressure. When gasification condition in oxygen/coal ratio has changed from 0.5 to 1.0, optimal gasification condition from low pressure runs was oxygen/coal ratio of approximately 0.9 where CO was produced about 40% and H, about 20%. Under the pressure condition of 12-14 atmospheres, optimal oxygen/coal ratio value was in the region of 0.6 where CO was produced about 55% and H2about 25%. From these results, it was found that the oxygen/ coal ratio for the maximum production of CO and H, was decreasing with the increase in gasifier pressure and also, with increasing oxygen content, carbon conversion was increased. For the Chinese Datong coal, cold gas efficiency was in the range of 40-80%.

Effects of shrouded cavity on loss in axial compressor cascade (압축기 슈라우드 캐비티에 기인한 손실 해석)

  • Lee, Jae Seok;Kim, Jin Hee;Kim, Tongbeum;Song, Seung Jin
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.427-433
    • /
    • 2004
  • The effects of flow interaction between mainstream and shrouded cavity leakage flow in an axial-flow compressor on aerodynamic losses are experimentally and numerically examined. A fraction of mainstream is Ingested in the downstream cavity and travelled in the shrouded cavity along the direction opposite to the mainstream. This leakage flow is caused by adverse pressure gradient along the blade passage. Then it is entrained through the upstream cavity near mid-pitch and interacts with the mainstream. As a result, the convection flow angle with respect to the blade chord is reduced i.e. underturning This underturned flow results in an increase in size of secondary flow formed near the suction side of the blade as well as its magnitude. Consequently, this causes pronounced increase in overall aerodynamic losses compared to the blading without shrouded cavity, leading to $9\%$ decrease in pressure rise through the single stage of the stators.

  • PDF

Effects of Entrained Air on the Characteristics of a Small Screw-type Centrifugal Pump (공기 흡입이 소형 스크류식 원심펌프의 특성에 미치는 영향)

  • Kim, You-Taek;Tanaka, Kazuhiro;Lee, Young-Ho;Matsumoto, Yoichiro
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.3 s.4
    • /
    • pp.37-44
    • /
    • 1999
  • In a screw-type centrifugal pump, the pump head deteriorates from single-phase flow to the choke due to an increased air entrainment at a wide tip clearance compared to that of a narrow tip clearance. Moreover, at a narrow tip clearance, the pump head became partially higher in a two-phase flow than that of a single-phase flow near the best efficiency point in low void fraction region. Therefore, we observed the internal flow pattern by using a stroboscope and we measured the mean size of bubbles from the images obtained with a high speed camera. Then, we investigated the influences of the mean size of bubbles, tip clearances and flow patterns on pump performance.

  • PDF

Air Influx Characteristics of Turbo Pumps (공기 유입시의 터보펌프 특성)

  • Kim, You-Taek;Nam, Cheong-Do;Kang, Ho-Keun;Lee, Young-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.43-48
    • /
    • 2004
  • A screw-type centrifugal pump was manufactured to carry solids primarily and its impeller has a wide flow passage. However, the effect of flow passage shape on delay of the choke due to entrained air has not been clarified yet. Moreover, because its impeller has a particular shape, only few studies have tried to clarify the pump performance and details of internal flow pattern of that pump. For that reason, we carried out the pump performance experiment under air-water two-phase flow condition with different impeller tip clearances, pump rotational speeds and void fractions by using a small screw-type centrifugal pump designed to acquire basic data. In a general centrifugal pump, it was reported that loss of pump head from single-phase flow to the choke due to air entrainment new the best efficiency point was large. However, the loss near the best efficient point in a screw-type centrifugal pump became less than that in a general centrifugal pump.

  • PDF

Comparison of Design Concepts for Four Different Entrained-Bed Coal Gasifier Types with CFD Analysis (CFD 해석을 통한 4종의 건식 분류층 석탄가스화기 설계개념 비교)

  • Yun, Yongseung;Ju, Jisun;Lee, Seung Jong
    • Applied Chemistry for Engineering
    • /
    • v.22 no.5
    • /
    • pp.566-574
    • /
    • 2011
  • Coal gasifier is a key component for achieving high efficiency in integrated gasification combined cycle and indirect coal liquefaction. Although there have been several successful coal gasifiers that were commercially proven, many different design configurations are still possible for a simple and reliable gasifier operation. Four different gasifier design concepts of dry-feeding were compared in terms of residence time, exit syngas temperature and syngas composition. First, cold-flow simulation was applied to pre-select the configuration concepts, and the hot-flow simulation including chemical reactions was performed to compare the concepts at more actual gasifier operating conditions. There are many limitations in applying CFD method in gasifier design, particularly in estimating slag behavior and slag-tap design. However, the CFD analysis proved to be useful in comparing the widely different gasifier design concepts as a pre-selection tool.

A Study on the Break-down Characteristics of a Screw-type Centrifugal Pump due to Air Entrainment (공기흡입에 의한 스크류식 원심펌프의 양수불능 특성에 관한 연구)

  • Kim, You-Taek
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.3 s.20
    • /
    • pp.58-63
    • /
    • 2003
  • The performance of turbo pump drops rapidly and it gets into break-down when the void fraction reaches above the threshold value because the impeller flow passage is choked up with air bubbles. Phenomenological understanding of break-down and pumping recovery mechanisms under air-water two-phase flow conditions are therefore important for pump designers and essential assignment for researchers. In this paper, we investigated the characteristics of break-down and pumping recovery due to entrained air occurring inside a screw-type centrifugal pump which has a wide flow passage mainly through the findings of suction and discharge pressures, rotational speed, flow rate measurements and visualization.

An Experimental Study on the Centrifugal Pump Characteristics in Air-Water Two-Phase Flow (기액 이상류시의 원심펌프특성에 관한 실험적 연구)

  • Kim, Sung-Yoon;Lee, Sang-Il;Kim, You-Taek
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.685-692
    • /
    • 2006
  • In a general centrifugal pump, if it is operated in a two-phase flow the activity of the impeller usually degrades and occasionally losses its function. However, the effect of break down of centrifugal pump due to entrained air has not been clarified yet. This paper shows the air-water two-phase flow characteristics of closed type and semi-open type impellers. In a sing1e-phase flow, closed-type impeller has higher efficiency and head. But in air-water two-phase flow semi-open type impeller's rates of decreases of efficiency and head are decreased.

Visualization of Gas/liquid Ejector Flow and Void Fraction Measurement using Fiber Optic Probe (기체-액체 이젝터 유동의 가시화와 광섬유 탐침에 의한 기포분율 측정)

  • Choi, Sung Hwan;Ji, Ho Seong;Kim, Kyung Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.11 no.1
    • /
    • pp.34-40
    • /
    • 2013
  • Gas/liquid two-phase ejector is a device without moving parts, in which liquid is used to drive gas of a low-pressure source. In this paper, the hydrodynamic characteristics of a vertical down type two-phase ejector were studied using an air-water loop system. Entrained air flow rates were measured with inlet and outlet pressures of the ejector with varying water flow rate. Homogeneous bubbly flows in the discharge pipe were confirmed by the high speed flow visualization method. Quantitative measurements of void fraction were made using a newly developed fiber optic probe system.