• Title/Summary/Keyword: enthalpy

Search Result 984, Processing Time 0.024 seconds

맥동관냉동기의 앤탈피이동 (Enthalpy transport in pulse tube refrigerators)

  • 강영구;정은수
    • 설비공학논문집
    • /
    • 제10권2호
    • /
    • pp.180-192
    • /
    • 1998
  • Enthalpy transport in a pulse tube was investigated by two-dimensional analysis of mass, momentum and energy equations assuming that the axial temperature gradient in the pulse tube is constant. Time-averaged second-order conservation equations of mass, momentum and energy were used to show the existence of steady mass streaming and enthalpy streaming. Effects of axial temperature gradient, velocity amplitude ratio and heat transfer between the gas and the wall on the steady mass streaming and enthalpy streaming were shown. Enthalpy loss due to the steady mass streaming is zero for basic and orifice pulse tube refrigerators, but it is proportional to the axial temperature gradient and steady mass flow rate through a pulse tube for double inlet pulse tube refrigerators.

  • PDF

Net Enthalpy Transport in Pulse Tube Refrigerators

  • Kang, Young-Goo;Jeong, Eun-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제7권
    • /
    • pp.33-44
    • /
    • 1999
  • Enthalpy transport in a pulse tube was investigated by two-dimensional analysis of mass, momentum and energy equations assuming that the axial temperature gradient in the pulse tube was constant. The time-averaged second-order conservation equations of mass, momentum and energy were used to show the existence of steady mass and enthalpy streaming. Effects of the axial temperature gradient, velocity amplitude ratio, and heat transfer between the gas and the tube wall On the steady mass and enthalpy streaming were shown. Enthalpy loss due to the steady mass streaming is zero for basic and orifice pulse tube refrigerators, but it is proportional to the axial temperature gradient and steady mass flow rate through a pulse tube for double inlet pulse tube refrigerators.

  • PDF

판형 종이 재질 전열교환 소자의 장기 성능 변화에 대한 실험적 연구 (An Experimental Study on the Long-Term Performance Variation of the Plate-Type Enthalpy Exchange Element Made of Paper)

  • 김내현
    • 설비공학논문집
    • /
    • 제28권4호
    • /
    • pp.165-170
    • /
    • 2016
  • Long-term performance of the enthalpy exchange element is a topic of current interest due to the concern of possible performance degradation over time. In this study, a 350 CMH enthalpy recovery ventilator equipped with an enthalpy exchange element was installed in an office room, and the performance has been traced over the past 5 years. The appearance, overall dimension, thermal performance, leakage ratio and anti-bacterial performance were checked annually. Results showed that the change in thermal performance (sensible, latent and enthalpy efficiency) was negligible with periodic cleaning with an air gun. However, the leakage ratio increased with time, measuring 7.3% after 5 years. Anti-bacterial test revealed that no bacteria were found during the test period. The largest change in the dimension occurred at the middle location of the element, although the change was less than 2% of the initial value.

고온 시험장치에서의 엔탈피 결정 (Determination of Enthalpy in the High Temperature Test Facility)

  • 나재정;이정민;강경택
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.224-227
    • /
    • 2011
  • 공기흡입 엔진 부품의 고온 분출냉각 시험장치에서의 엔탈피값을 구하기 위하여, 시험부 유동에 대한 이론적 계산 및 측정을 수행하였다. 열평형 및 음속유동 방법에 의해 계산된 질량평균 엔탈피 값은 10 MJ/kg 이며, 슬러그형 구리 열량계를 사용하여 측정된 유동 중심에서의 엔탈피 값은 15 MJ/kg이었다. 일반적으로, 유동 중심 대 질량평균 엔탈피 비의 범위는 1.4에서 4이다. 본 시험장치는 고온 분출냉각 시험에 효과적인 낮은 엔탈피 구배를 갖는 것으로 나타났다.

  • PDF

엔탈피방법을 적용한 이원용액의 응고과정 해석 방법 (An Enthalpy Model for the Solidification of Binary Mixture)

  • 유재석
    • 설비공학논문집
    • /
    • 제5권1호
    • /
    • pp.35-43
    • /
    • 1993
  • A numerical model for the solidification of binary mixture is proposed. Numerical model, which employs enthalpy method, is modified from Continuum model, that is, improved relation is proposed for the Enthalpy - Temperature - Concentration - Liquid Mass Fraction. One dimensional example was selected to verify the proposed model. The results show that the new relation can be applied successfully to the solidification or melting of binary mixture.

  • PDF

Experimental Investigation and Modeling of the Specific Enthalpy Distribution in a Spray Cone

  • Ellendt, N.;Uhlenwinkel, V.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.58-59
    • /
    • 2006
  • In Spray Forming, specific enthalpy is a key parameter in the deposition process as it influences the thermal condition of the impinging droplets as well as that of the deposit surface. An empirical model for the distribution of specific enthalpy in the spray cone was developed as an easy to handle alternative to numerical models with which the descriptive partial differential equations are solved numerically. The model results were compared with the experimental data to validate its applicability.

  • PDF

열유동 해석을 위한 에너지 방정식의 온도에 현시적인 이산화 기법 (TEMPERATURE-EXPLICIT FORMULATION OF ENERGY EQUATION FOR A HEAT TRANSFER ANALYSIS)

  • 김종태;김상백
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.277-282
    • /
    • 2009
  • A temperature equation which is derived from an enthalpy transport equation by using an assumption of a constant specific heat is very attractive for analyses of heat and fluid flows. It can be used for an analysis of a solid-fluid conjugate heat transfer, and it does not need a numerical method to find temperature from a temperature-enthalpy relation. But its application is limited because of the assumption. A new method is derived in this study, which is a temperature-explicit formulation of the energy equation. The enthalpy form of the energy equation is used in the method. But the final discrete form of the equation is expressed with temperature. It can be used for a solid-fluid conjugate heat transfer and multiphase flows. It is found by numerical tests that it is very efficient and as accurate as the standard enthalpy formulation.

  • PDF

Performance Comparison of Four-Parameter Correlation Equations of the Enthalpy of Vaporization

  • Lee, Kyoung-Youl;Park, Kyoung-Kuhn
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제14권3호
    • /
    • pp.118-123
    • /
    • 2006
  • A few commonly used correlation equations of the enthalpy of vaporization essential to the analysis of refrigeration cycles are reviewed. A new four-parameter correlation equation is proposed assuming that the enthalpy of vaporization could be represented with a linear form of the temperature and an additional function which slowly decreases as the temperature increases. It is not a common practice to measure the enthalpy of vaporization by experiment; therefore, performance of the new correlation is examined using numeric data from the ASHRAE tables for 22 pure substance refrigerants. The new correlation equation and other existing ones are fitted to the data optimizing the root mean squared deviation. All data points are weighted equally and NBP (normal boiling point) is used as a fixed point since the NBP is important for refrigeration application. The new four-parameter equation yields an average absolute deviation of 0.05% for 22 refrigerants which is smaller than those of other four-parameter equations, such as Guermouche-Vergnaud (0.08%), Aerebrot (0.13%), Radoz-Lyderson (0.08%), and Somayajulu four-parameter equation (0.08%).

맥동관냉동기의 정상상태 질량흐름에 의한 엔탈피손실 (Enthalpy Flow Loss by Steady Mass Streaming in Pulse Tube Refrigerators)

  • 백상호;정은수
    • 설비공학논문집
    • /
    • 제12권7호
    • /
    • pp.623-631
    • /
    • 2000
  • Effects of the taper angle and the angular velocity of a pulse tube on the enthalpy flow loss associated with the steady mass streaming were analysis by two-dimensional analysis of a pulse tube with variable cross-section. It was shown that the steady mass flux can lead to a large steady second-order temperature. The enthalpy flow loss associated with the steady mass streaming increases as the angular velocity increases. For a pulse tube where the viscous penetration depth is far thinner than the inner radius, the enthalpy flow loss can be significantly reduced by tapering the pulse tube since both the steady mass flux and the steady second-order temperature decrease as the taper angle increase.

  • PDF

Enthalpy and Void Distributions in Subchannels of PHWR Fuel Bundles

  • Park, J.W.;Choi, H.;Rhee, B.W.
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1998년도 춘계학술발표회논문집(1)
    • /
    • pp.502-507
    • /
    • 1998
  • Two different types the CANDU fuel bundles hue been modeled for the ASSERT-IV code subchannel analysis. From calculated values of mixture enthalpy and void paction distributions in the fuel bundles, it is found that net buoyancy effect is pronounced in the central region of the DUPIC fuel bundle when compared with the standard CANDU fuel bundle. It is also found that the central region of the DUPIC fuel bundle can be cooled more efficiently than that of the standard fuel bundle. From calculated mixture enthalpy distribution at the exit of fuel channel, it is found that the mixture enthalpy and void fraction can be highest in the peripheral region of the DUPIC fuel bundle. On the other hand, the enthalpy and the void fraction were found to be highest in the central region of the standard CANDU fuel bundle at the exit of the fuel channel. This study shows that the subchannel analysis is very useful assessing thermal behavior of the fuel bundle that could be used in CANDU reactors.

  • PDF