• Title/Summary/Keyword: enterprise social network service

Search Result 23, Processing Time 0.018 seconds

A Study on the Influence of Relation Commitment of SNS Marketing Features in Domestic Enterprise (국내기업의 SNS 마케팅 특성이 관계몰입에 미치는 영향에 관한 연구)

  • Yim, Ki-Heung
    • Journal of Digital Convergence
    • /
    • v.11 no.10
    • /
    • pp.341-350
    • /
    • 2013
  • Recently, in order to promote their marketing promotion, the entrepeneurs attach importance to many SNS(Social Network Service)and execute it. The representative elements of the SNS service are interactivity, information offering. This study analyzes empirical effects on the SNS Marketing Features in Domesic Enterprise The conclusion of this study shows that the Interactivity has a higher positive effects on Affective Commitment than those on information offering and Information offering has stronger positive effects on calculative commitment than interactivity. Also, these effects enlarge the high use frequency more than the low use frequency. This study also shows that the information offering affect the On-line Word-of-Mouth more positively than the Interactivity. And this study shows that SNS affects the positive effects on the relationship commitment rather than the On-line Word-of-Mouth. Based on the results, the practical implications are offered.

A Study on the Service Improvement Strategies by Enterprise through the Analysis of Customer Response Reviews in Smart Home Applications : Based on the Classification of Functional Elements and Design Elements of smart Home Usability Values (스마트 홈 어플리케이션의 고객반응리뷰분석을 통한 기업별 서비스개선전략에 대한 연구 : 스마트 홈 사용성 가치의 기능적요소와 디자인적 요소 분류를 바탕으로)

  • Heo, Ji Yeon;Kim, Min Ji;Cha, Kyung Jin
    • Journal of Information Technology Services
    • /
    • v.19 no.4
    • /
    • pp.85-107
    • /
    • 2020
  • The Internet of Things market, a technology that connects the Internet to various things, is growing day by day. Besides, various smart home services using IoT and AI (Artificial Intelligence) are being launched in homes. Related to this, existing smart home-related studies focus primarily on ICT technology, not on what service improvements should be made in customer positions. In this study, we will use smart home application customer review data to classify functional and design elements of smart home usability value and examine the ways customers think of service improvement. For this, LG Electronics and Samsung Electronics" Smart Home application, the main provider of Smart Home in Korea, customer reviews were crawled to conduct a comparative analysis between them. In this study, the review of IoT home-applications was analyzed to find service improvement insights from customer perspective, and related analysis of text mining, social network analysis and Doc2vec was used to efficiently analyze data equivalent to about 16,000 user reviews. Through this research, we hope that related companies effectively seek ways to improve smart home services that reflect customer needs and are expected to help them establish competitive strategies by identifying weaknesses and strengths among competitors.

Prediction of Dormant Customer in the Card Industry (카드산업에서 휴면 고객 예측)

  • DongKyu Lee;Minsoo Shin
    • Journal of Service Research and Studies
    • /
    • v.13 no.2
    • /
    • pp.99-113
    • /
    • 2023
  • In a customer-based industry, customer retention is the competitiveness of a company, and improving customer retention improves the competitiveness of the company. Therefore, accurate prediction and management of potential dormant customers is paramount to increasing the competitiveness of the enterprise. In particular, there are numerous competitors in the domestic card industry, and the government is introducing an automatic closing system for dormant card management. As a result of these social changes, the card industry must focus on better predicting and managing potential dormant cards, and better predicting dormant customers is emerging as an important challenge. In this study, the Recurrent Neural Network (RNN) methodology was used to predict potential dormant customers in the card industry, and in particular, Long-Short Term Memory (LSTM) was used to efficiently learn data for a long time. In addition, to redefine the variables needed to predict dormant customers in the card industry, Unified Theory of Technology (UTAUT), an integrated technology acceptance theory, was applied to redefine and group the variables used in the model. As a result, stable model accuracy and F-1 score were obtained, and Hit-Ratio proved that models using LSTM can produce stable results compared to other algorithms. It was also found that there was no moderating effect of demographic information that could occur in UTAUT, which was pointed out in previous studies. Therefore, among variable selection models using UTAUT, dormant customer prediction models using LSTM are proven to have non-biased stable results. This study revealed that there may be academic contributions to the prediction of dormant customers using LSTM algorithms that can learn well from previously untried time series data. In addition, it is a good example to show that it is possible to respond to customers who are preemptively dormant in terms of customer management because it is predicted at a time difference with the actual dormant capture, and it is expected to contribute greatly to the industry.