We examined the effect of individual sweating responses on thermoregulatory responses induced by heat of sorption, immediately after the onset of sweating. The present study consists of two experiments. In experiment 1, made of 100% cotton (C) and 100% polyester (P) clothing were exposed in the chamber at ambient temperature (Ta) of $27.2^{\circ}C$ and relative humidity (rh) raised from 50% to 95% at five different increase rates of environmental vapor pressure (VP). The increase rate of clothing surface temperature (Tcs), peak Tcs and peak time showed significant correlation with the increase rate of environmental VP in C-clothing (p<0.05). In experiment 2, seven female subjects were studied during leg water immersion ($35-41^{\circ}C$) for 70min in Ta of 27.2 and 50%rh. There were significant positive correlations in the increase rate of clothing microclimate VP vs. changes in Tcs, skin blood flow, mean skin temperature and mean body temperature (p<0.05). The present results showed that individual clothing microclimate VP had significant effects on thermoregulatory responses induced by heat of sorption wearing C ensembles.
The objective of this paper is to compare probabilistic temperature forecasts from different regional and global ensemble prediction systems over PyeongChang area. A statistical post-processing method is used to take into account combination and calibration of forecasts from different numerical prediction systems, laying greater weight on ensemble model that exhibits the best performance. Observations for temperature were obtained from the 30 stations in PyeongChang and three different ensemble forecasts derived from the European Centre for Medium-Range Weather Forecasts, Ensemble Prediction System for Global and Limited Area Ensemble Prediction System that were obtained between 1 May 2014 and 18 March 2017. Prior to applying to the post-processing methods, reliability analysis was conducted to identify the statistical consistency of ensemble forecasts and corresponding observations. Then, ensemble model output statistics and bias-corrected methods were applied to each raw ensemble model and then proposed weighted combination of ensembles. The results showed that the proposed methods provide improved performances than raw ensemble mean. In particular, multi-model forecast based on ensemble model output statistics was superior to the bias-corrected forecast in terms of deterministic prediction.
This study investigates a 12 month-lead predictability of PNU Coupled General Circulation Model (CGCM) V1.1 hindcast, for which an oceanic data assimilated initialization is used to generate ocean initial condition. The CGCM, a participant model of APEC Climate Center (APCC) long-lead multi-model ensemble system, has been initialized at each and every month and performed 12-month-lead hindcast for each month during 1980 to 2011. The 12-month-lead hindcast consisted of 2-5 ensembles and this study verified the ensemble averaged hindcast. As for the sea-surface temperature concerns, it remained high level of confidence especially over the tropical Pacific and the mid-latitude central Pacific with slight declining of temporal correlation coefficients (TCC) as lead month increased. The CGCM revealed trustworthy ENSO prediction skills in most of hindcasts, in particular. For atmospheric variables, like air temperature, precipitation, and geopotential height at 500hPa, reliable prediction results have been shown during entire lead time in most of domain, particularly over the equatorial region. Though the TCCs of hindcasted precipitation are lower than other variables, a skillful precipitation forecasts is also shown over highly variable regions such as ITCZ. This study also revealed that there are seasonal and regional dependencies on predictability for each variable and lead.
International Journal of Fuzzy Logic and Intelligent Systems
/
v.14
no.4
/
pp.256-267
/
2014
An automatic switch among ensembles of clustering algorithms is proposed as a part of the bibliographic big data retrieval system by utilizing a fuzzy inference engine as a decision support tool to select the fastest performing clustering algorithm between fuzzy C-means (FCM) clustering, Newman-Girvan clustering, and the combination of both. It aims to realize the best clustering performance with the reduction of computational complexity from O($n^3$) to O(n). The automatic switch is developed by using fuzzy logic controller written in Java and accepts 3 inputs from each clustering result, i.e., number of clusters, number of vertices, and time taken to complete the clustering process. The experimental results on PC (Intel Core i5-3210M at 2.50 GHz) demonstrates that the combination of both clustering algorithms is selected as the best performing algorithm in 20 out of 27 cases with the highest percentage of 83.99%, completed in 161 seconds. The self-adapted FCM is selected as the best performing algorithm in 4 cases and the Newman-Girvan is selected in 3 cases.The automatic switch is to be incorporated into the bibliographic big data retrieval system that focuses on visualization of fuzzy relationship using hybrid approach combining FCM and Newman-Girvan algorithm, and is planning to be released to the public through the Internet.
In this study, We endeavored to revaluate the effects of different types of clothing and colors on clothing microclimate in the subjects wearing sports wear at sunlight environment. This study was conducted 4 different kinds (cotton 100%) of clothing ensembles, that was W-1(long trousers and shirt of white color), B-1 (long trousers and shirt of black color), W-s (short trousers and shirt white color), B-s (short trousers and shirt black color) and were done in a climate chamber under sunlight ambient temperature ($33.67{\pm}1.8^{\circ}C$, $46.0{\pm}8.5%RH$) by three males subject who are in good healthy. Start a 20-min rest period, 20-min bouts of exercise and final 20-min recovery period were performed. The kinetic load was given for 20 minutes under the condition of 6.0 km/hr walking speed on the treadmill. The results is as followed In case of same type of garment, temperature within clothing which is based on difference of color the white ensemble keeps higher temperature than black one. According to distribution chart of temperature within clothing in case of chest, white one shows higher temperature than black one, in case of back, black one shows higher temperature than white one. Difference of heart rate was so clear and sequence is W-1>B-1>W-s>B-s, so we could find same tendency with temperature within clothing.
Park, Hyunjin;Han, Jaemoon;Kim, Jongho;Kim, Dongkyun
Proceedings of the Korea Water Resources Association Conference
/
2015.05a
/
pp.189-189
/
2015
본 연구는 기후변화의 영향을 고려한 포아송 강우생성모형의 일종인 MBLRP(Modified Bartlett-Lewis Rectangular Pulse)를 개발하고, 대한민국 주요 도시에 대해 향후 100년간 강우의 변화를 살펴보았다. 기존 MBLRP 모형에서 기후변화에 따른 강우량 변화를 고려할 수 있도록 GCM 모형의 강우 자료를 활용하였고, GCM 모형으로부터 발생하는 불확실성을 고려하기 위해 IPCC의 RCP(Representative Concentration Pathways) 시나리오를 모의한 16개의 GCM 모형을 사용하였다. 2007년부터 2099년까지의 미래기간을 3개의 시 구간으로 구분하고, 16개 GCM 앙상블을 사용하여 미래기간 동안 대한민국 16개 도시에 대해 1000개의 샘플을 BWA 방법을 이용하여 생성하였다. 제어기간(1973-2005) 대비 미래기간(2007-2099)의 변화율을 나타내는 FOC(factor of change)와 온도의 연별 변화율을 나타내는 SF(scaling factor)의 개념을 결합하여 미래기간에 대한 CF(correction factor)를 산정하였다. 이때 CF는 16개 도시의 연 단위 강우량 변화 비율을 월별로 나타내며, 제어기간의 월 강우 관측치와 CF를 몬테카를로 모의를 실시하여 미래기간의 강우 시나리오를 산정한다. 이를 통해 월 평균 강우량 통계치를 연 단위로 얻을 수 있으며, 월 평균 강우량이 월 평균 분산, 무강우확률, 자기상관계수와 가지는 선형 관계를 통해 강우 통계치를 산출한다. 이와 같은 강우 통계치는 가상강우생성모형인 MBLRP 모형에 입력 자료로 활용되어 월 강우량을 시 단위의 강우 시계열 자료로 생성해낸다. 최종적으로 MBLRP 모형으로 산정된 시 단위 강우 시계열은 기후변화 영향을 고려한 GCMs 앙상블로 생성된 강우 시나리오를 기반으로 산출되기 때문에 향후 수자원 분석에 활용 가능할 것이라 기대된다.
Ganjavi, Behnoud;Hadinejad, Amirali;Jafarieh, Amir Hossein
Steel and Composite Structures
/
v.32
no.1
/
pp.91-110
/
2019
In the present study, the effects of six different ground motion scaling methods on inelastic response of nonlinear steel moment frames (SMFs) are studied. The frames were designed using energy-based PBPD approach with the design concept using pre-selected target drift and yield mechanism as performance limit state. Two target spectrums are considered: maximum credible earthquake spectrum (MCE) and design response spectrum (DRS). In order to investigate the effects of ground motion scaling methods on the response of the structures, totally 3216 nonlinear models including three frames with 4, 8 and 16 stories are designed using PBPD approach and then they are subjected to ensembles of ground motions including 42 far-fault and 90 near-fault pulse-type records which were scaled using the six different scaling methods in accordance to the two aforementioned target spectrums. The distributions of maximum inter-story drift over the height of the structures are computed and compared. Finally, the efficiency and reliability of each ground motion scaling method to estimate the maximum nonlinear inter-story drift of special steel moment frames designed by energy-based PBPD approach are statistically investigated, and the most suitable scaling methods with the lowest dispersion for two groups of earthquake ground motions are introduced.
In our previous study, we investigated the use of ensemble models based on LeNet and MiniVGGNet to classify the images of transverse and longitudinal surfaces of five Korean softwoods (cedar, cypress, Korean pine, Korean red pine, and larch). It had accomplished an average F1 score of more than 98%; the classification performance of the longitudinal surface image was still less than that of the transverse surface image. In this study, ensemble methods of two different convolutional neural network models (LeNet3 for smartphone camera images and NIRNet for NIR spectra) were applied to lumber species classification. Experimentally, the best classification performance was obtained by the averaging ensemble method of LeNet3 and NIRNet. The average F1 scores of the individual LeNet3 model and the individual NIRNet model were 91.98% and 85.94%, respectively. By the averaging ensemble method of LeNet3 and NIRNet, an average F1 score was increased to 95.31%.
The early prediction of Compressive Strength of Concrete (CSC) is a significant task in the civil engineering construction projects. This study, therefore, is dedicated to introducing two novel hybrids of neural computing, namely Shuffled Complex Evolution (SCE) and Teaching-Learning-Based Optimization (TLBO) for predicting the CSC. The algorithms are applied to a Multi-Layer Perceptron (MLP) network to create the SCE-MLP and TLBO-MLP ensembles. The results revealed that, first, intelligent models can properly handle analyzing and generalizing the non-linear relationship between the CSC and its influential parameters. For example, the smallest and largest values of the CSC were 17.19 and 58.53 MPa, and the outputs of the MLP, SCE-MLP, and TLBO-MLP range in [17.61, 54.36], [17.69, 55.55] and [18.07, 53.83], respectively. Second, applying the SCE and TLBO optimizers resulted in increasing the correlation of the MLP products from 93.58 to 97.32 and 97.22%, respectively. The prediction error was also reduced by around 34 and 31% which indicates the high efficiency of these algorithms. Moreover, regarding the computation time needed to implement the SCE-MLP and TLBO-MLP models, the SCE is a considerably more time-efficient optimizer. Nevertheless, both suggested models can be promising substitutes for laboratory and destructive CSC evaluative models.
Random forests is a popular method that improves the instability and accuracy of decision trees by ensembles. In contrast to increasing the accuracy, the ease of interpretation is sacrificed; hence, to compensate for this, variable importance is provided. The variable importance indicates which variable plays a role more importantly in constructing the random forests. However, when a predictor is correlated with other predictors, the variable importance of the existing importance algorithm may be distorted. The downward bias of correlated predictors may reduce the importance of truly important predictors. We propose a new algorithm remedying the downward bias of correlated predictors. The performance of the proposed algorithm is demonstrated by the simulated data and illustrated by the real data.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.