• Title/Summary/Keyword: ensemble methods

Search Result 284, Processing Time 0.027 seconds

Quantitative analysis by derivative spectrophotometry (ll) Derivative spectrophotometry and methods for the reduction of high frequency noises

  • Park, Man-Ki;Cho, Jung-Hwan
    • Archives of Pharmacal Research
    • /
    • v.10 no.1
    • /
    • pp.1-8
    • /
    • 1987
  • One of the problems of derivatie spectrophotometry, the decrease of signal-to-noise ratio by derivative operations, was solved by three concepts of digital filtering, ensemble averaging, least squares polynomial smoothing and Fourier smoothing. The suthors made several compouter programs written in APPLE SOFT BASIC language for the actual applications of the concepts of these digital filters on UV spectrophotometer system. As a result, ensemble averaging could not be used as a routine operation for the spectrophotometer used. The maximum S/N ratio enhancement factors achieved by least squares polynomial smoothing were 6.17 and 7.47 for the spectra of Gaussian and Lorentzian distribution models, and by Fourier smoothing 16.42 and 11.78 for the spectra of two models, respectively.

  • PDF

Learning to Prevent Inactive Student of Indonesia Open University

  • Tama, Bayu Adhi
    • Journal of Information Processing Systems
    • /
    • v.11 no.2
    • /
    • pp.165-172
    • /
    • 2015
  • The inactive student rate is becoming a major problem in most open universities worldwide. In Indonesia, roughly 36% of students were found to be inactive, in 2005. Data mining had been successfully employed to solve problems in many domains, such as for educational purposes. We are proposing a method for preventing inactive students by mining knowledge from student record systems with several state of the art ensemble methods, such as Bagging, AdaBoost, Random Subspace, Random Forest, and Rotation Forest. The most influential attributes, as well as demographic attributes (marital status and employment), were successfully obtained which were affecting student of being inactive. The complexity and accuracy of classification techniques were also compared and the experimental results show that Rotation Forest, with decision tree as the base-classifier, denotes the best performance compared to other classifiers.

Algorithm detecting an evoked potential using the ensemble averaged bispectrum (The ensemble averaged bispectrum을 이용한 유발전위 검출 알고리즘)

  • Choi, J.M.;Bae, B.H.;Kim, S.Y.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1994 no.12
    • /
    • pp.124-127
    • /
    • 1994
  • A technique based on bispectrun averaging is described for generally recovering the signal waveform from a set of noisy signals with variable signal delay. The technique does not require explicit tune alignment of signals and any initial estimate of signal. The new method is suggested and is compared with other methods. This method are numerically investigated using computer generated-data and a physiological signal and noise Some experimental results for the evoked potential studios that demonstrate the technique are given. The results show the effectiveness of the technique: various potential applications of the technique might be expected.

  • PDF

The new effective algorithm detecting an evoked potential using the ensemble averaged bispectrum (유발전위 검줄을 위한 The ensemble averged bispectrum의 더 효과적인 복원 알고리즘)

  • 최정미;배병훈;김수용
    • Progress in Medical Physics
    • /
    • v.6 no.1
    • /
    • pp.3-11
    • /
    • 1995
  • A technique based on bispectrum averaging is described for generally recovering the signal waveform from a set of noisy signals with variable signal delay. The technique does not require explicit time alignment of signals and initial estimate of sigals and initial etimate of signal. The new method is suggested and is compared with other methods. This method are numerically investigated using computer generated-data and a phtsiological signal and noise. Some expermeental results for the evoked potential studies that demonstrate the technique are given. The results show the effectiveness of the technique : various potential applictions of the techique might be expected.

  • PDF

Hybrid Feature Selection Method Based on Genetic Algorithm for the Diagnosis of Coronary Heart Disease

  • Wiharto, Wiharto;Suryani, Esti;Setyawan, Sigit;Putra, Bintang PE
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.1
    • /
    • pp.31-40
    • /
    • 2022
  • Coronary heart disease (CHD) is a comorbidity of COVID-19; therefore, routine early diagnosis is crucial. A large number of examination attributes in the context of diagnosing CHD is a distinct obstacle during the pandemic when the number of health service users is significant. The development of a precise machine learning model for diagnosis with a minimum number of examination attributes can allow examinations and healthcare actions to be undertaken quickly. This study proposes a CHD diagnosis model based on feature selection, data balancing, and ensemble-based classification methods. In the feature selection stage, a hybrid SVM-GA combined with fast correlation-based filter (FCBF) is used. The proposed system achieved an accuracy of 94.60% and area under the curve (AUC) of 97.5% when tested on the z-Alizadeh Sani dataset and used only 8 of 54 inspection attributes. In terms of performance, the proposed model can be placed in the very good category.

A Study on Korean Sentiment Analysis Rate Using Neural Network and Ensemble Combination

  • Sim, YuJeong;Moon, Seok-Jae;Lee, Jong-Youg
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.268-273
    • /
    • 2021
  • In this paper, we propose a sentiment analysis model that improves performance on small-scale data. A sentiment analysis model for small-scale data is proposed and verified through experiments. To this end, we propose Bagging-Bi-GRU, which combines Bi-GRU, which learns GRU, which is a variant of LSTM (Long Short-Term Memory) with excellent performance on sequential data, in both directions and the bagging technique, which is one of the ensembles learning methods. In order to verify the performance of the proposed model, it is applied to small-scale data and large-scale data. And by comparing and analyzing it with the existing machine learning algorithm, Bi-GRU, it shows that the performance of the proposed model is improved not only for small data but also for large data.

An Empirical Analysis of Boosing of Neural Networks for Bankruptcy Prediction (부스팅 인공신경망학습의 기업부실예측 성과비교)

  • Kim, Myoung-Jong;Kang, Dae-Ki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.1
    • /
    • pp.63-69
    • /
    • 2010
  • Ensemble is one of widely used methods for improving the performance of classification and prediction models. Two popular ensemble methods, Bagging and Boosting, have been applied with great success to various machine learning problems using mostly decision trees as base classifiers. This paper performs an empirical comparison of Boosted neural networks and traditional neural networks on bankruptcy prediction tasks. Experimental results on Korean firms indicated that the boosted neural networks showed the improved performance over traditional neural networks.

Prediction of Residual Resistance Coefficient of Low-Speed Full Ships Using Hull Form Variables and Machine Learning Approaches (선형변수 기계학습 기법을 활용한 저속비대선의 잉여저항계수 추정)

  • Kim, Yoo-Chul;Yang, Kyung-Kyu;Kim, Myung-Soo;Lee, Young-Yeon;Kim, Kwang-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.6
    • /
    • pp.312-321
    • /
    • 2020
  • In this study, machine learning techniques were applied to predict the residual resistance coefficient (Cr) of low-speed full ships. The used machine learning methods are Ridge regression, support vector regression, random forest, neural network and their ensemble model. 19 hull form variables were used as input variables for machine learning methods. The hull form variables and Cr data obtained from 139 hull forms of KRISO database were used in analysis. 80 % of the total data were used as training models and the rest as validation. Some non-linear models showed the overfitted results and the ensemble model showed better results than others.

Comparative assessment and uncertainty analysis of ensemble-based hydrologic data assimilation using airGRdatassim (airGRdatassim을 이용한 앙상블 기반 수문자료동화 기법의 비교 및 불확실성 평가)

  • Lee, Garim;Lee, Songhee;Kim, Bomi;Woo, Dong Kook;Noh, Seong Jin
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.10
    • /
    • pp.761-774
    • /
    • 2022
  • Accurate hydrologic prediction is essential to analyze the effects of drought, flood, and climate change on flow rates, water quality, and ecosystems. Disentangling the uncertainty of the hydrological model is one of the important issues in hydrology and water resources research. Hydrologic data assimilation (DA), a technique that updates the status or parameters of a hydrological model to produce the most likely estimates of the initial conditions of the model, is one of the ways to minimize uncertainty in hydrological simulations and improve predictive accuracy. In this study, the two ensemble-based sequential DA techniques, ensemble Kalman filter, and particle filter are comparatively analyzed for the daily discharge simulation at the Yongdam catchment using airGRdatassim. The results showed that the values of Kling-Gupta efficiency (KGE) were improved from 0.799 in the open loop simulation to 0.826 in the ensemble Kalman filter and to 0.933 in the particle filter. In addition, we analyzed the effects of hyper-parameters related to the data assimilation methods such as precipitation and potential evaporation forcing error parameters and selection of perturbed and updated states. For the case of forcing error conditions, the particle filter was superior to the ensemble in terms of the KGE index. The size of the optimal forcing noise was relatively smaller in the particle filter compared to the ensemble Kalman filter. In addition, with more state variables included in the updating step, performance of data assimilation improved, implicating that adequate selection of updating states can be considered as a hyper-parameter. The simulation experiments in this study implied that DA hyper-parameters needed to be carefully optimized to exploit the potential of DA methods.

Multi-Time Window Feature Extraction Technique for Anger Detection in Gait Data

  • Beom Kwon;Taegeun Oh
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.4
    • /
    • pp.41-51
    • /
    • 2023
  • In this paper, we propose a technique of multi-time window feature extraction for anger detection in gait data. In the previous gait-based emotion recognition methods, the pedestrian's stride, time taken for one stride, walking speed, and forward tilt angles of the neck and thorax are calculated. Then, minimum, mean, and maximum values are calculated for the entire interval to use them as features. However, each feature does not always change uniformly over the entire interval but sometimes changes locally. Therefore, we propose a multi-time window feature extraction technique that can extract both global and local features, from long-term to short-term. In addition, we also propose an ensemble model that consists of multiple classifiers. Each classifier is trained with features extracted from different multi-time windows. To verify the effectiveness of the proposed feature extraction technique and ensemble model, a public three-dimensional gait dataset was used. The simulation results demonstrate that the proposed ensemble model achieves the best performance compared to machine learning models trained with existing feature extraction techniques for four performance evaluation metrics.